forked from xzzjx/dpdl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfc.py
99 lines (82 loc) · 3.47 KB
/
fc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#coding: utf-8
from __future__ import division, unicode_literals, print_function, absolute_import
import tensorflow as tf
import numpy as np
from keras.layers import Dense, Activation
import keras
import math
FLAGS = tf.flags.FLAGS
class StudentModel:
@staticmethod
def build(input_shape, classes):
# input_shape is 1-d vector
model = keras.Sequential()
model.add(Dense(800, input_dim=input_shape))
model.add(Activation("relu"))
model.add(Dense(800))
model.add(Activation('relu'))
model.add(Dense(classes))
model.add(Activation('softmax'))
return model
def weight_variable(name, shape, stddev):
# initial = tf.truncated_normal(shape, stddev=stddev)
weight = tf.get_variable(name, shape, initializer=tf.truncated_normal_initializer(stddev=stddev))
return weight
def bias_variable(name, shape, initial):
bias = tf.get_variable(name, shape, initializer=tf.constant_initializer(initial))
return bias
def max_out(inputs, num_units, axis=None):
shape = inputs.get_shape().as_list()
if shape[0] is None:
shape[0] = -1
if axis is None: # Assume that channel is the last dimension
axis = -1
num_channels = shape[axis]
if num_channels % num_units:
raise ValueError('number of features({}) is not '
'a multiple of num_units({})'.format(num_channels, num_units))
shape[axis] = num_units
shape += [num_channels // num_units]
outputs = tf.reduce_max(tf.reshape(inputs, shape), -1, keep_dims=False)
return outputs
def inference(images):
img_row, img_col, depth = 28, 28, 1
hk = FLAGS.hk
with tf.variable_scope('layer1') as scope:
weights = weight_variable('weight', shape=[img_row * img_col * depth, 100], stddev=1.0 / 500)
biases = bias_variable('bias', [100], initial=0.1)
layer1 = tf.nn.relu(tf.matmul(images, weights) + biases, name=scope.name)
with tf.variable_scope('layer2') as scope:
weights = weight_variable('weight', shape=[100, hk], stddev=1/100.0)
biases = bias_variable('bias', [hk], initial=0.1)
# layer2 = tf.nn.relu(tf.matmul(layer1, weights) + biases, name=scope.name)
layer2 = tf.matmul(layer1, weights) + biases
with tf.variable_scope('batch_norm') as scope:
batch_mean, batch_var = tf.nn.moments(layer2, [0])
beta2 = tf.zeros_like(layer2)
scale2 = tf.ones_like(layer2)
BN = tf.nn.batch_normalization(layer2, batch_mean, batch_var, beta2, scale2, 1e-3)
with tf.variable_scope('FM') as scope:
hfc1 = max_out(BN, hk)
hfc1 = tf.clip_by_value(hfc1, -1, 1)
deltaf = 10 * (hk + 1/4 * (hk ** 2))
epsilon = FLAGS.epsilon
batch_size = FLAGS.batch_size
scale = deltaf / (epsilon * batch_size)
noise = np.random.laplace(0.0, scale, hk)
noise = np.reshape(noise, [hk])
hfc1 = hfc1 + noise
weights = weight_variable('weight', shape=[hk, 10], stddev=1.0/hk)
biases = bias_variable('bias', [10], initial=0.1)
logits = tf.matmul(hfc1, weights) + biases
return logits
def loss_fun(logits, y):
'''
y is one-hot vector
'''
zeros = tf.zeros_like(logits, dtype=logits.dtype)
cond = (logits >= zeros)
relu_logits = tf.where(cond, logits, zeros)
neg_abs_logits = tf.where(cond, -logits, logits)
loss = tf.add(relu_logits - logits * y, math.log(2.0) + 0.5*neg_abs_logits + 1.0 / 8.0 * neg_abs_logits**2, name='noise_loss')
return loss