forked from kpu/kenlm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtune_instances.cc
501 lines (436 loc) · 19.2 KB
/
tune_instances.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
/* Load tuning instances and filter underlying models to them. A tuning
* instance is an n-gram in the tuning file. To tune towards these, we want
* the correct probability p_i(w_n | w_1^{n-1}) from each model as well as
* all the denominators p_i(v | w_1^{n-1}) that appear in normalization.
*
* In other words, we filter the models to only those n-grams whose context
* appears in the tuning data. This can be divided into two categories:
* - All unigrams. This goes into Instances::ln_unigrams_
* - Bigrams and above whose context appears in the tuning data. These are
* known as extensions. We only care about the longest extension for each
* w_1^{n-1}v since that is what will be used for the probability.
* Because there is a large number of extensions (we tried keeping them in RAM
* and ran out), the streaming framework is used to keep track of extensions
* and sort them so they can be streamed in. Downstream code
* (tune_derivatives.hh) takes a stream of extensions ordered by tuning
* instance, the word v, and the model the extension came from.
*/
#include "lm/interpolate/tune_instances.hh"
#include "lm/common/compare.hh"
#include "lm/common/joint_order.hh"
#include "lm/common/model_buffer.hh"
#include "lm/common/ngram_stream.hh"
#include "lm/common/renumber.hh"
#include "lm/enumerate_vocab.hh"
#include "lm/interpolate/merge_vocab.hh"
#include "lm/interpolate/universal_vocab.hh"
#include "lm/lm_exception.hh"
#include "util/file_piece.hh"
#include "util/murmur_hash.hh"
#include "util/stream/chain.hh"
#include "util/stream/io.hh"
#include "util/stream/sort.hh"
#include "util/tokenize_piece.hh"
#include <boost/shared_ptr.hpp>
#include <boost/unordered_map.hpp>
#include <cmath>
#include <limits>
#include <vector>
namespace lm { namespace interpolate {
// gcc 4.6 complains about uninitialized when sort code is generated for a 4-byte POD. But that sort code is never used.
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wuninitialized"
bool Extension::operator<(const Extension &other) const {
if (instance != other.instance)
return instance < other.instance;
if (word != other.word)
return word < other.word;
if (model != other.model)
return model < other.model;
return false;
}
#pragma GCC diagnostic pop
namespace {
// An extension without backoff weights applied yet.
#pragma pack(push)
#pragma pack(1)
struct InitialExtension {
Extension ext;
// Order from which it came.
uint8_t order;
};
#pragma pack(pop)
struct InitialExtensionCompare {
bool operator()(const void *first, const void *second) const {
return reinterpret_cast<const InitialExtension *>(first)->ext < reinterpret_cast<const InitialExtension *>(second)->ext;
}
};
// Intended use
// For each model:
// stream through orders jointly in suffix order:
// Call MatchedBackoff for full matches.
// Call Exit when the context matches.
// Call FinishModel with the unigram probability of the correct word, get full
// probability in return.
// Use backoffs_out to adjust records that were written to the stream.
// backoffs_out(model, order - 1) is the penalty for matching order.
class InstanceMatch {
public:
InstanceMatch(Matrix &backoffs_out, const WordIndex correct)
: seen_(std::numeric_limits<WordIndex>::max()),
backoffs_(backoffs_out),
correct_(correct), correct_from_(1), correct_ln_prob_(std::numeric_limits<float>::quiet_NaN()) {}
void MatchedBackoff(ModelIndex model, uint8_t order, float ln_backoff) {
backoffs_(model, order - 1) = ln_backoff;
}
// We only want the highest-order matches, which are the first to be exited for a given word.
void Exit(const InitialExtension &from, util::stream::Stream &out) {
if (from.ext.word == seen_) return;
seen_ = from.ext.word;
*static_cast<InitialExtension*>(out.Get()) = from;
++out;
if (UTIL_UNLIKELY(correct_ == from.ext.word)) {
correct_from_ = from.order;
correct_ln_prob_ = from.ext.ln_prob;
}
}
WordIndex Correct() const { return correct_; }
// Call this after each model has been passed through. Provide the unigram
// probability of the correct word (which follows the given context).
// This function will return the fully-backed-off probability of the correct
// word.
float FinishModel(ModelIndex model, float correct_ln_unigram) {
seen_ = std::numeric_limits<WordIndex>::max();
// Turn backoffs into multiplied values (added in log space).
// So backoffs_(model, order - 1) is the penalty for matching order.
float accum = 0.0;
for (int order = backoffs_.cols() - 1; order >= 0; --order) {
accum += backoffs_(model, order);
backoffs_(model, order) = accum;
}
if (correct_from_ == 1) {
correct_ln_prob_ = correct_ln_unigram;
}
if (correct_from_ - 1 < backoffs_.cols()) {
correct_ln_prob_ += backoffs_(model, correct_from_ - 1);
}
correct_from_ = 1;
return correct_ln_prob_;
}
private:
// What's the last word we've seen? Used to act only on exiting the longest match.
WordIndex seen_;
Matrix &backoffs_;
const WordIndex correct_;
// These only apply to the most recent model.
uint8_t correct_from_;
float correct_ln_prob_;
};
// Forward information to multiple instances of a context. So if the tuning
// set contains
// a b c d e
// a b c d e
// there's one DispatchContext for a b c d which calls two InstanceMatch, one
// for each tuning instance. This might be to inform them about a b c d g in
// one of the models.
class DispatchContext {
public:
void Register(InstanceMatch &context) {
registered_.push_back(&context);
}
void MatchedBackoff(ModelIndex model, uint8_t order, float ln_backoff) {
for (std::vector<InstanceMatch*>::iterator i = registered_.begin(); i != registered_.end(); ++i)
(*i)->MatchedBackoff(model, order, ln_backoff);
}
void Exit(InitialExtension &from, util::stream::Stream &out, const InstanceMatch *base_instance) {
for (std::vector<InstanceMatch*>::iterator i = registered_.begin(); i != registered_.end(); ++i) {
from.ext.instance = *i - base_instance;
(*i)->Exit(from, out);
}
}
private:
// TODO make these offsets in a big array rather than separately allocated.
std::vector<InstanceMatch*> registered_;
};
// Map from n-gram hash to contexts in the tuning data. TODO: probing hash table?
typedef boost::unordered_map<uint64_t, DispatchContext> ContextMap;
// Handle all the orders of a single model at once.
class JointOrderCallback {
public:
JointOrderCallback(
std::size_t model,
std::size_t full_order_minus_1,
ContextMap &contexts,
util::stream::Stream &out,
const InstanceMatch *base_instance)
: full_order_minus_1_(full_order_minus_1),
contexts_(contexts),
out_(out),
base_instance_(base_instance) {
ext_.ext.model = model;
}
void Enter(std::size_t order_minus_1, const void *data) {}
void Exit(std::size_t order_minus_1, void *data) {
// Match the full n-gram for backoffs.
if (order_minus_1 != full_order_minus_1_) {
NGram<ProbBackoff> gram(data, order_minus_1 + 1);
ContextMap::iterator i = contexts_.find(util::MurmurHashNative(gram.begin(), gram.Order() * sizeof(WordIndex)));
if (UTIL_UNLIKELY(i != contexts_.end())) {
i->second.MatchedBackoff(ext_.ext.model, gram.Order(), gram.Value().backoff * M_LN10);
}
}
// Match the context of the n-gram to indicate it's an extension.
ContextMap::iterator i = contexts_.find(util::MurmurHashNative(data, order_minus_1 * sizeof(WordIndex)));
if (UTIL_UNLIKELY(i != contexts_.end())) {
NGram<Prob> gram(data, order_minus_1 + 1);
// model is already set.
// instance is set by DispatchContext.
// That leaves word, ln_prob, and order.
ext_.ext.word = *(gram.end() - 1);
ext_.ext.ln_prob = gram.Value().prob * M_LN10;
ext_.order = order_minus_1 + 1;
// model was already set in the constructor.
// ext_.ext.instance is set by the Exit call.
i->second.Exit(ext_, out_, base_instance_);
}
}
void Run(const util::stream::ChainPositions &positions) {
JointOrder<JointOrderCallback, SuffixOrder>(positions, *this);
}
private:
const std::size_t full_order_minus_1_;
// Mapping is constant but values are being manipulated to tell them about
// n-grams.
ContextMap &contexts_;
// Reused variable. model is set correctly.
InitialExtension ext_;
util::stream::Stream &out_;
const InstanceMatch *const base_instance_;
};
// This populates the ln_unigrams_ matrix. It can (and should for efficiency)
// be run in the same scan as JointOrderCallback.
class ReadUnigrams {
public:
explicit ReadUnigrams(Matrix::ColXpr out) : out_(out) {}
// Read renumbered unigrams, fill with <unk> otherwise.
void Run(const util::stream::ChainPosition &position) {
NGramStream<ProbBackoff> stream(position);
assert(stream);
Accum unk = stream->Value().prob * M_LN10;
WordIndex previous = 0;
for (; stream; ++stream) {
WordIndex word = *stream->begin();
out_.segment(previous, word - previous) = Vector::Constant(word - previous, unk);
out_(word) = stream->Value().prob * M_LN10;
//backoffs are used by JointOrderCallback.
previous = word + 1;
}
out_.segment(previous, out_.rows() - previous) = Vector::Constant(out_.rows() - previous, unk);
}
private:
Matrix::ColXpr out_;
};
// Read tuning data into an array of vocab ids. The vocab ids are agreed with MergeVocab.
class IdentifyTuning : public EnumerateVocab {
public:
IdentifyTuning(int tuning_file, std::vector<WordIndex> &out) : indices_(out) {
indices_.clear();
StringPiece line;
std::size_t counter = 0;
std::vector<std::size_t> &eos = words_[util::MurmurHashNative("</s>", 4)];
for (util::FilePiece f(tuning_file); f.ReadLineOrEOF(line);) {
for (util::TokenIter<util::BoolCharacter, true> word(line, util::kSpaces); word; ++word) {
UTIL_THROW_IF(*word == "<s>" || *word == "</s>", FormatLoadException, "Illegal word in tuning data: " << *word);
words_[util::MurmurHashNative(word->data(), word->size())].push_back(counter++);
}
eos.push_back(counter++);
}
// Also get <s>
indices_.resize(counter + 1);
words_[util::MurmurHashNative("<s>", 3)].push_back(indices_.size() - 1);
}
// Apply ids as they come out of MergeVocab if they match.
void Add(WordIndex id, const StringPiece &str) {
boost::unordered_map<uint64_t, std::vector<std::size_t> >::iterator i = words_.find(util::MurmurHashNative(str.data(), str.size()));
if (i != words_.end()) {
for (std::vector<std::size_t>::iterator j = i->second.begin(); j != i->second.end(); ++j) {
indices_[*j] = id;
}
}
}
WordIndex FinishGetBOS() {
WordIndex ret = indices_.back();
indices_.pop_back();
return ret;
}
private:
// array of words in tuning data.
std::vector<WordIndex> &indices_;
// map from hash(string) to offsets in indices_.
boost::unordered_map<uint64_t, std::vector<std::size_t> > words_;
};
} // namespace
// Store information about the first iteration.
class ExtensionsFirstIteration {
public:
explicit ExtensionsFirstIteration(std::size_t instances, std::size_t models, std::size_t max_order, util::stream::Chain &extension_input, const util::stream::SortConfig &config)
: backoffs_by_instance_(new std::vector<Matrix>(instances)), sort_(extension_input, config) {
// Initialize all the backoff matrices to zeros.
for (std::vector<Matrix>::iterator i = backoffs_by_instance_->begin(); i != backoffs_by_instance_->end(); ++i) {
*i = Matrix::Zero(models, max_order);
}
}
Matrix &WriteBackoffs(std::size_t instance) {
return (*backoffs_by_instance_)[instance];
}
// Get the backoff all the way to unigram for a particular tuning instance and model.
Accum FullBackoff(std::size_t instance, std::size_t model) const {
return (*backoffs_by_instance_)[instance](model, 0);
}
void Merge(std::size_t lazy_memory) {
sort_.Merge(lazy_memory);
lazy_memory_ = lazy_memory;
}
void Output(util::stream::Chain &chain) {
sort_.Output(chain, lazy_memory_);
chain >> ApplyBackoffs(backoffs_by_instance_);
}
private:
class ApplyBackoffs {
public:
explicit ApplyBackoffs(boost::shared_ptr<std::vector<Matrix> > backoffs_by_instance)
: backoffs_by_instance_(backoffs_by_instance) {}
void Run(const util::stream::ChainPosition &position) {
// There should always be tuning instances.
const std::vector<Matrix> &backoffs = *backoffs_by_instance_;
assert(!backoffs.empty());
uint8_t max_order = backoffs.front().cols();
for (util::stream::Stream stream(position); stream; ++stream) {
InitialExtension &ini = *reinterpret_cast<InitialExtension*>(stream.Get());
assert(ini.order > 1); // If it's an extension, it should be higher than a unigram.
if (ini.order != max_order) {
ini.ext.ln_prob += backoffs[ini.ext.instance](ini.ext.model, ini.order - 1);
}
}
}
private:
boost::shared_ptr<std::vector<Matrix> > backoffs_by_instance_;
};
// Array of complete backoff matrices by instance.
// Each matrix is by model, then by order.
// Would have liked to use a tensor but it's not that well supported.
// This is a shared pointer so that ApplyBackoffs can run after this class is gone.
boost::shared_ptr<std::vector<Matrix> > backoffs_by_instance_;
// This sorts and stores all the InitialExtensions.
util::stream::Sort<InitialExtensionCompare> sort_;
std::size_t lazy_memory_;
};
Instances::Instances(int tune_file, const std::vector<StringPiece> &model_names, const InstancesConfig &config) : temp_prefix_(config.sort.temp_prefix) {
// All the memory from stack variables here should go away before merge sort of the instances.
{
util::FixedArray<ModelBuffer> models(model_names.size());
// Load tuning set and join vocabulary.
std::vector<WordIndex> vocab_sizes;
vocab_sizes.reserve(model_names.size());
util::FixedArray<int> vocab_files(model_names.size());
std::size_t max_order = 0;
for (std::vector<StringPiece>::const_iterator i = model_names.begin(); i != model_names.end(); ++i) {
models.push_back(*i);
vocab_sizes.push_back(models.back().Counts()[0]);
vocab_files.push_back(models.back().VocabFile());
max_order = std::max(max_order, models.back().Order());
}
UniversalVocab vocab(vocab_sizes);
std::vector<WordIndex> tuning_words;
WordIndex combined_vocab_size;
{
IdentifyTuning identify(tune_file, tuning_words);
combined_vocab_size = MergeVocab(vocab_files, vocab, identify);
bos_ = identify.FinishGetBOS();
}
// Setup the initial extensions storage: a chain going to a sort with a stream in the middle for writing.
util::stream::Chain extensions_chain(util::stream::ChainConfig(sizeof(InitialExtension), 2, config.extension_write_chain_mem));
util::stream::Stream extensions_write(extensions_chain.Add());
extensions_first_.reset(new ExtensionsFirstIteration(tuning_words.size(), model_names.size(), max_order, extensions_chain, config.sort));
// Populate the ContextMap from contexts to instances.
ContextMap cmap;
util::FixedArray<InstanceMatch> instances(tuning_words.size());
{
UTIL_THROW_IF2(tuning_words.empty(), "Empty tuning data");
const WordIndex eos = tuning_words.back();
std::vector<WordIndex> context;
context.push_back(bos_);
for (std::size_t i = 0; i < tuning_words.size(); ++i) {
instances.push_back(boost::ref(extensions_first_->WriteBackoffs(i)), tuning_words[i]);
for (std::size_t j = 0; j < context.size(); ++j) {
cmap[util::MurmurHashNative(&context[j], sizeof(WordIndex) * (context.size() - j))].Register(instances.back());
}
// Prepare for next word by starting a new sentence or shifting context.
if (tuning_words[i] == eos) {
context.clear();
context.push_back(bos_);
} else {
if (context.size() == max_order) {
context.erase(context.begin());
}
context.push_back(tuning_words[i]);
}
}
}
// Go through each model. Populate:
// ln_backoffs_
ln_backoffs_.resize(instances.size(), models.size());
// neg_ln_correct_sum_
neg_ln_correct_sum_.resize(models.size());
// ln_unigrams_
ln_unigrams_.resize(combined_vocab_size, models.size());
// The backoffs in extensions_first_
for (std::size_t m = 0; m < models.size(); ++m) {
std::cerr << "Processing model " << m << '/' << models.size() << ": " << model_names[m] << std::endl;
util::stream::Chains chains(models[m].Order());
for (std::size_t i = 0; i < models[m].Order(); ++i) {
// TODO: stop wasting space for backoffs of highest order.
chains.push_back(util::stream::ChainConfig(NGram<ProbBackoff>::TotalSize(i + 1), 2, config.model_read_chain_mem));
}
chains.back().ActivateProgress();
models[m].Source(chains);
for (std::size_t i = 0; i < models[m].Order(); ++i) {
chains[i] >> Renumber(vocab.Mapping(m), i + 1);
}
// Populate ln_unigrams_.
chains[0] >> ReadUnigrams(ln_unigrams_.col(m));
// Send extensions into extensions_first_ and give data to the instances about backoffs/extensions.
chains >> JointOrderCallback(m, models[m].Order() - 1, cmap, extensions_write, instances.begin());
chains >> util::stream::kRecycle;
chains.Wait(true);
neg_ln_correct_sum_(m) = 0.0;
for (InstanceMatch *i = instances.begin(); i != instances.end(); ++i) {
neg_ln_correct_sum_(m) -= i->FinishModel(m, ln_unigrams_(i->Correct(), m));
ln_backoffs_(i - instances.begin(), m) = extensions_first_->FullBackoff(i - instances.begin(), m);
}
ln_unigrams_(bos_, m) = 0; // Does not matter as long as it does not produce nans since tune_derivatives will overwrite the output.
}
extensions_write.Poison();
}
extensions_first_->Merge(config.lazy_memory);
}
Instances::~Instances() {}
// TODO: size reduction by excluding order for subsequent passes.
std::size_t Instances::ReadExtensionsEntrySize() const {
return sizeof(InitialExtension);
}
void Instances::ReadExtensions(util::stream::Chain &on) {
if (extensions_first_.get()) {
// Lazy sort and save a sorted copy to disk. TODO: cut down on record size by stripping out order information.
extensions_first_->Output(on);
extensions_first_.reset(); // Relevant data will continue to live in workers.
extensions_subsequent_.reset(new util::stream::FileBuffer(util::MakeTemp(temp_prefix_)));
on >> extensions_subsequent_->Sink();
} else {
on.SetProgressTarget(extensions_subsequent_->Size());
on >> extensions_subsequent_->Source();
}
}
// Back door.
Instances::Instances() {}
}} // namespaces