-
Notifications
You must be signed in to change notification settings - Fork 0
/
launch.py
874 lines (790 loc) · 28.7 KB
/
launch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
"""Launching tool for DGL distributed training"""
import argparse
import json
import logging
import multiprocessing
import os
import queue
import re
import signal
import stat
import subprocess
import sys
import time
from functools import partial
from threading import Thread
from typing import Optional
def cleanup_proc(get_all_remote_pids, conn):
"""This process tries to clean up the remote training tasks."""
print("cleanupu process runs")
# This process should not handle SIGINT.
signal.signal(signal.SIGINT, signal.SIG_IGN)
data = conn.recv()
# If the launch process exits normally, this process doesn't need to do anything.
if data == "exit":
sys.exit(0)
else:
remote_pids = get_all_remote_pids()
# Otherwise, we need to ssh to each machine and kill the training jobs.
for (ip, port), pids in remote_pids.items():
kill_process(ip, port, pids)
print("cleanup process exits")
def kill_process(ip, port, pids):
"""ssh to a remote machine and kill the specified processes."""
curr_pid = os.getpid()
killed_pids = []
# If we kill child processes first, the parent process may create more again. This happens
# to Python's process pool. After sorting, we always kill parent processes first.
pids.sort()
for pid in pids:
assert curr_pid != pid
print("kill process {} on {}:{}".format(pid, ip, port), flush=True)
kill_cmd = (
"ssh -o StrictHostKeyChecking=no -p "
+ str(port)
+ " "
+ ip
+ " 'kill {}'".format(pid)
)
subprocess.run(kill_cmd, shell=True)
killed_pids.append(pid)
# It's possible that some of the processes are not killed. Let's try again.
for i in range(3):
killed_pids = get_killed_pids(ip, port, killed_pids)
if len(killed_pids) == 0:
break
else:
killed_pids.sort()
for pid in killed_pids:
print(
"kill process {} on {}:{}".format(pid, ip, port), flush=True
)
kill_cmd = (
"ssh -o StrictHostKeyChecking=no -p "
+ str(port)
+ " "
+ ip
+ " 'kill -9 {}'".format(pid)
)
subprocess.run(kill_cmd, shell=True)
def get_killed_pids(ip, port, killed_pids):
"""Get the process IDs that we want to kill but are still alive."""
killed_pids = [str(pid) for pid in killed_pids]
killed_pids = ",".join(killed_pids)
ps_cmd = (
"ssh -o StrictHostKeyChecking=no -p "
+ str(port)
+ " "
+ ip
+ " 'ps -p {} -h'".format(killed_pids)
)
res = subprocess.run(ps_cmd, shell=True, stdout=subprocess.PIPE)
pids = []
for p in res.stdout.decode("utf-8").split("\n"):
l = p.split()
if len(l) > 0:
pids.append(int(l[0]))
return pids
def execute_remote(
cmd: str,
state_q: queue.Queue,
ip: str,
port: int,
username: Optional[str] = "",
) -> Thread:
"""Execute command line on remote machine via ssh.
Args:
cmd: User-defined command (udf) to execute on the remote host.
state_q: A queue collecting Thread exit states.
ip: The ip-address of the host to run the command on.
port: Port number that the host is listening on.
thread_list:
username: Optional. If given, this will specify a username to use when issuing commands over SSH.
Useful when your infra requires you to explicitly specify a username to avoid permission issues.
Returns:
thread: The Thread whose run() is to run the `cmd` on the remote host. Returns when the cmd completes
on the remote host.
"""
ip_prefix = ""
if username:
ip_prefix += "{username}@".format(username=username)
# Construct ssh command that executes `cmd` on the remote host
ssh_cmd = "ssh -o StrictHostKeyChecking=no -p {port} {ip_prefix}{ip} '{cmd}'".format(
port=str(port),
ip_prefix=ip_prefix,
ip=ip,
cmd=cmd,
)
# thread func to run the job
def run(ssh_cmd, state_q):
try:
subprocess.check_call(ssh_cmd, shell=True)
state_q.put(0)
except subprocess.CalledProcessError as err:
print(f"Called process error {err}")
state_q.put(err.returncode)
except Exception:
state_q.put(-1)
thread = Thread(
target=run,
args=(
ssh_cmd,
state_q,
),
)
thread.setDaemon(True)
thread.start()
# sleep for a while in case of ssh is rejected by peer due to busy connection
time.sleep(0.2)
return thread
def get_remote_pids(ip, port, cmd_regex):
"""Get the process IDs that run the command in the remote machine."""
pids = []
curr_pid = os.getpid()
# Here we want to get the python processes. We may get some ssh processes, so we should filter them out.
ps_cmd = (
"ssh -o StrictHostKeyChecking=no -p "
+ str(port)
+ " "
+ ip
+ " 'ps -aux | grep python | grep -v StrictHostKeyChecking'"
)
res = subprocess.run(ps_cmd, shell=True, stdout=subprocess.PIPE)
for p in res.stdout.decode("utf-8").split("\n"):
l = p.split()
if len(l) < 2:
continue
# We only get the processes that run the specified command.
res = re.search(cmd_regex, p)
if res is not None and int(l[1]) != curr_pid:
pids.append(l[1])
pid_str = ",".join([str(pid) for pid in pids])
ps_cmd = (
"ssh -o StrictHostKeyChecking=no -p "
+ str(port)
+ " "
+ ip
+ " 'pgrep -P {}'".format(pid_str)
)
res = subprocess.run(ps_cmd, shell=True, stdout=subprocess.PIPE)
pids1 = res.stdout.decode("utf-8").split("\n")
all_pids = []
for pid in set(pids + pids1):
if pid == "" or int(pid) == curr_pid:
continue
all_pids.append(int(pid))
all_pids.sort()
return all_pids
def get_all_remote_pids(hosts, ssh_port, udf_command):
"""Get all remote processes."""
remote_pids = {}
for node_id, host in enumerate(hosts):
ip, _ = host
# When creating training processes in remote machines, we may insert some arguments
# in the commands. We need to use regular expressions to match the modified command.
cmds = udf_command.split()
new_udf_command = " .*".join(cmds)
pids = get_remote_pids(ip, ssh_port, new_udf_command)
remote_pids[(ip, ssh_port)] = pids
return remote_pids
def construct_torch_dist_launcher_cmd(
num_trainers: int,
num_nodes: int,
node_rank: int,
master_addr: str,
master_port: int,
) -> str:
"""Constructs the torch distributed launcher command.
Helper function.
Args:
num_trainers:
num_nodes:
node_rank:
master_addr:
master_port:
Returns:
cmd_str.
"""
torch_cmd_template = (
"-m torch.distributed.launch "
"--nproc_per_node={nproc_per_node} "
"--nnodes={nnodes} "
"--node_rank={node_rank} "
"--master_addr={master_addr} "
"--master_port={master_port}"
)
return torch_cmd_template.format(
nproc_per_node=num_trainers,
nnodes=num_nodes,
node_rank=node_rank,
master_addr=master_addr,
master_port=master_port,
)
def wrap_udf_in_torch_dist_launcher(
udf_command: str,
num_trainers: int,
num_nodes: int,
node_rank: int,
master_addr: str,
master_port: int,
) -> str:
"""Wraps the user-defined function (udf_command) with the torch.distributed.launch module.
Example: if udf_command is "python3 run/some/trainer.py arg1 arg2", then new_df_command becomes:
"python3 -m torch.distributed.launch <TORCH DIST ARGS> run/some/trainer.py arg1 arg2
udf_command is assumed to consist of pre-commands (optional) followed by the python launcher script (required):
Examples:
# simple
python3.7 path/to/some/trainer.py arg1 arg2
# multi-commands
(cd some/dir && python3.7 path/to/some/trainer.py arg1 arg2)
IMPORTANT: If udf_command consists of multiple python commands, then this will result in undefined behavior.
Args:
udf_command:
num_trainers:
num_nodes:
node_rank:
master_addr:
master_port:
Returns:
"""
torch_dist_cmd = construct_torch_dist_launcher_cmd(
num_trainers=num_trainers,
num_nodes=num_nodes,
node_rank=node_rank,
master_addr=master_addr,
master_port=master_port,
)
# Auto-detect the python binary that kicks off the distributed trainer code.
# Note: This allowlist order matters, this will match with the FIRST matching entry. Thus, please add names to this
# from most-specific to least-specific order eg:
# (python3.7, python3.8) -> (python3)
# The allowed python versions are from this: https://www.dgl.ai/pages/start.html
python_bin_allowlist = (
"python3.6",
"python3.7",
"python3.8",
"python3.9",
"python3",
# for backwards compatibility, accept python2 but technically DGL is a py3 library, so this is not recommended
"python2.7",
"python2",
)
# If none of the candidate python bins match, then we go with the default `python`
python_bin = "python"
for candidate_python_bin in python_bin_allowlist:
if candidate_python_bin in udf_command:
python_bin = candidate_python_bin
break
# transforms the udf_command from:
# python path/to/dist_trainer.py arg0 arg1
# to:
# python -m torch.distributed.launch [DIST TORCH ARGS] path/to/dist_trainer.py arg0 arg1
# Note: if there are multiple python commands in `udf_command`, this may do the Wrong Thing, eg launch each
# python command within the torch distributed launcher.
new_udf_command = udf_command.replace(
python_bin, f"{python_bin} {torch_dist_cmd}"
)
return new_udf_command
def construct_dgl_server_env_vars(
num_samplers: int,
num_server_threads: int,
tot_num_clients: int,
part_config: str,
ip_config: str,
num_servers: int,
graph_format: str,
keep_alive: bool,
pythonpath: Optional[str] = "",
) -> str:
"""Constructs the DGL server-specific env vars string that are required for DGL code to behave in the correct
server role.
Convenience function.
Args:
num_samplers:
num_server_threads:
tot_num_clients:
part_config: Partition config.
Relative path to workspace.
ip_config: IP config file containing IP addresses of cluster hosts.
Relative path to workspace.
num_servers:
graph_format:
keep_alive:
Whether to keep server alive when clients exit
pythonpath: Optional. If given, this will pass this as PYTHONPATH.
Returns:
server_env_vars: The server-specific env-vars in a string format, friendly for CLI execution.
"""
server_env_vars_template = (
"DGL_ROLE={DGL_ROLE} "
"DGL_NUM_SAMPLER={DGL_NUM_SAMPLER} "
"OMP_NUM_THREADS={OMP_NUM_THREADS} "
"DGL_NUM_CLIENT={DGL_NUM_CLIENT} "
"DGL_CONF_PATH={DGL_CONF_PATH} "
"DGL_IP_CONFIG={DGL_IP_CONFIG} "
"DGL_NUM_SERVER={DGL_NUM_SERVER} "
"DGL_GRAPH_FORMAT={DGL_GRAPH_FORMAT} "
"DGL_KEEP_ALIVE={DGL_KEEP_ALIVE} "
"{suffix_optional_envvars}"
)
suffix_optional_envvars = ""
if pythonpath:
suffix_optional_envvars += f"PYTHONPATH={pythonpath} "
return server_env_vars_template.format(
DGL_ROLE="server",
DGL_NUM_SAMPLER=num_samplers,
OMP_NUM_THREADS=num_server_threads,
DGL_NUM_CLIENT=tot_num_clients,
DGL_CONF_PATH=part_config,
DGL_IP_CONFIG=ip_config,
DGL_NUM_SERVER=num_servers,
DGL_GRAPH_FORMAT=graph_format,
DGL_KEEP_ALIVE=int(keep_alive),
suffix_optional_envvars=suffix_optional_envvars,
)
def construct_dgl_client_env_vars(
num_samplers: int,
tot_num_clients: int,
part_config: str,
ip_config: str,
num_servers: int,
graph_format: str,
num_omp_threads: int,
group_id: int,
pythonpath: Optional[str] = "",
) -> str:
"""Constructs the DGL client-specific env vars string that are required for DGL code to behave in the correct
client role.
Convenience function.
Args:
num_samplers:
tot_num_clients:
part_config: Partition config.
Relative path to workspace.
ip_config: IP config file containing IP addresses of cluster hosts.
Relative path to workspace.
num_servers:
graph_format:
num_omp_threads:
group_id:
Used in client processes to indicate which group it belongs to.
pythonpath: Optional. If given, this will pass this as PYTHONPATH.
Returns:
client_env_vars: The client-specific env-vars in a string format, friendly for CLI execution.
"""
client_env_vars_template = (
"DGL_DIST_MODE={DGL_DIST_MODE} "
"DGL_ROLE={DGL_ROLE} "
"DGL_NUM_SAMPLER={DGL_NUM_SAMPLER} "
"DGL_NUM_CLIENT={DGL_NUM_CLIENT} "
"DGL_CONF_PATH={DGL_CONF_PATH} "
"DGL_IP_CONFIG={DGL_IP_CONFIG} "
"DGL_NUM_SERVER={DGL_NUM_SERVER} "
"DGL_GRAPH_FORMAT={DGL_GRAPH_FORMAT} "
"OMP_NUM_THREADS={OMP_NUM_THREADS} "
"DGL_GROUP_ID={DGL_GROUP_ID} "
"{suffix_optional_envvars}"
)
# append optional additional env-vars
suffix_optional_envvars = ""
if pythonpath:
suffix_optional_envvars += f"PYTHONPATH={pythonpath} "
return client_env_vars_template.format(
DGL_DIST_MODE="distributed",
DGL_ROLE="client",
DGL_NUM_SAMPLER=num_samplers,
DGL_NUM_CLIENT=tot_num_clients,
DGL_CONF_PATH=part_config,
DGL_IP_CONFIG=ip_config,
DGL_NUM_SERVER=num_servers,
DGL_GRAPH_FORMAT=graph_format,
OMP_NUM_THREADS=num_omp_threads,
DGL_GROUP_ID=group_id,
suffix_optional_envvars=suffix_optional_envvars,
)
def wrap_cmd_with_local_envvars(cmd: str, env_vars: str) -> str:
"""Wraps a CLI command with desired env vars with the following properties:
(1) env vars persist for the entire `cmd`, even if it consists of multiple "chained" commands like:
cmd = "ls && pwd && python run/something.py"
(2) env vars don't pollute the environment after `cmd` completes.
Example:
>>> cmd = "ls && pwd"
>>> env_vars = "VAR1=value1 VAR2=value2"
>>> wrap_cmd_with_local_envvars(cmd, env_vars)
"(export VAR1=value1 VAR2=value2; ls && pwd)"
Args:
cmd:
env_vars: A string containing env vars, eg "VAR1=val1 VAR2=val2"
Returns:
cmd_with_env_vars:
"""
# use `export` to persist env vars for entire cmd block. required if udf_command is a chain of commands
# also: wrap in parens to not pollute env:
# https://stackoverflow.com/a/45993803
return f"(export {env_vars}; {cmd})"
def wrap_cmd_with_extra_envvars(cmd: str, env_vars: list) -> str:
"""Wraps a CLI command with extra env vars
Example:
>>> cmd = "ls && pwd"
>>> env_vars = ["VAR1=value1", "VAR2=value2"]
>>> wrap_cmd_with_extra_envvars(cmd, env_vars)
"(export VAR1=value1 VAR2=value2; ls && pwd)"
Args:
cmd:
env_vars: A list of strings containing env vars, e.g., ["VAR1=value1", "VAR2=value2"]
Returns:
cmd_with_env_vars:
"""
env_vars = " ".join(env_vars)
return wrap_cmd_with_local_envvars(cmd, env_vars)
g_monitor_file = None
g_group_id = 0
def has_alive_servers(args):
"""Check whether there exists alive servers.
For each group of long live servers, a monitor file named
'dgl_dist_monitor_{args.server_name}' is created under '/tmp/' directory.
We check the existence of this monitor file to determine whether to
launch new servers or utilize the existing alive ones. If there
exist alive servers, we obtain availale group ID from the monitor
file which could be used in current client groups.
Returns
-------
bool
indicates whether there exists alive servers.
"""
if args.server_name is None:
return False
global g_monitor_file
global g_group_id
monitor_file = "/tmp/dgl_dist_monitor_" + args.server_name
from filelock import FileLock
lock = FileLock(monitor_file + ".lock")
with lock:
next_group_id = None
ret = os.path.exists(monitor_file)
if ret:
print(
"Monitor file for alive servers already exist: {}.".format(
monitor_file
)
)
lines = [line.rstrip("\n") for line in open(monitor_file)]
g_group_id = int(lines[0])
next_group_id = g_group_id + 1
if not ret and args.keep_alive:
next_group_id = 1
print(
"Monitor file for alive servers is created: {}.".format(
monitor_file
)
)
g_monitor_file = monitor_file
if next_group_id is not None:
with open(monitor_file, "w") as f:
f.write(str(next_group_id))
return ret
def clean_alive_servers():
"""Remove keep alive related files"""
global g_monitor_file
try:
if g_monitor_file is not None:
os.remove(g_monitor_file)
os.remove(g_monitor_file + ".lock")
print(
"Monitor file for alive servers is removed: {}.".format(
g_monitor_file
)
)
except:
print(
"Failed to delete monitor file for alive servers: {}.".format(
g_monitor_file
)
)
def get_available_port(ip):
"""Get available port with specified ip."""
import socket
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
for port in range(1234, 65535):
try:
sock.connect((ip, port))
except:
return port
raise RuntimeError("Failed to get available port for ip~{}".format(ip))
def submit_jobs(args, udf_command, dry_run=False):
"""Submit distributed jobs (server and client processes) via ssh"""
if dry_run:
print(
"Currently it's in dry run mode which means no jobs will be launched."
)
servers_cmd = []
clients_cmd = []
hosts = []
thread_list = []
server_count_per_machine = 0
# Get the IP addresses of the cluster.
ip_config = os.path.join(args.workspace, args.ip_config)
with open(ip_config) as f:
for line in f:
result = line.strip().split()
if len(result) == 2:
ip = result[0]
port = int(result[1])
hosts.append((ip, port))
elif len(result) == 1:
ip = result[0]
port = get_available_port(ip)
hosts.append((ip, port))
else:
raise RuntimeError("Format error of ip_config.")
server_count_per_machine = args.num_servers
# Get partition info of the graph data
part_config = os.path.join(args.workspace, args.part_config)
with open(part_config) as conf_f:
part_metadata = json.load(conf_f)
assert "num_parts" in part_metadata, "num_parts does not exist."
# The number of partitions must match the number of machines in the cluster.
assert part_metadata["num_parts"] == len(
hosts
), "The number of graph partitions has to match the number of machines in the cluster."
state_q = queue.Queue()
tot_num_clients = args.num_trainers * (1 + args.num_samplers) * len(hosts)
# launch server tasks
if not has_alive_servers(args):
server_env_vars = construct_dgl_server_env_vars(
num_samplers=args.num_samplers,
num_server_threads=args.num_server_threads,
tot_num_clients=tot_num_clients,
part_config=args.part_config,
ip_config=args.ip_config,
num_servers=args.num_servers,
graph_format=args.graph_format,
keep_alive=args.keep_alive,
pythonpath=os.environ.get("PYTHONPATH", ""),
)
for i in range(len(hosts) * server_count_per_machine):
ip, _ = hosts[int(i / server_count_per_machine)]
server_env_vars_cur = f"{server_env_vars} DGL_SERVER_ID={i}"
cmd = wrap_cmd_with_local_envvars(udf_command, server_env_vars_cur)
cmd = (
wrap_cmd_with_extra_envvars(cmd, args.extra_envs)
if len(args.extra_envs) > 0
else cmd
)
cmd = "cd " + str(args.workspace) + "; " + cmd
servers_cmd.append(cmd)
if not dry_run:
thread_list.append(
execute_remote(
cmd,
state_q,
ip,
args.ssh_port,
username=args.ssh_username,
)
)
else:
print(f"Use running server {args.server_name}.")
# launch client tasks
client_env_vars = construct_dgl_client_env_vars(
num_samplers=args.num_samplers,
tot_num_clients=tot_num_clients,
part_config=args.part_config,
ip_config=args.ip_config,
num_servers=args.num_servers,
graph_format=args.graph_format,
num_omp_threads=os.environ.get(
"OMP_NUM_THREADS", str(args.num_omp_threads)
),
group_id=g_group_id,
pythonpath=os.environ.get("PYTHONPATH", ""),
)
master_addr = hosts[0][0]
master_port = get_available_port(master_addr)
for node_id, host in enumerate(hosts):
ip, _ = host
# Transform udf_command to follow torch's dist launcher format: `PYTHON_BIN -m torch.distributed.launch ... UDF`
torch_dist_udf_command = wrap_udf_in_torch_dist_launcher(
udf_command=udf_command,
num_trainers=args.num_trainers,
num_nodes=len(hosts),
node_rank=node_id,
master_addr=master_addr,
master_port=master_port,
)
cmd = wrap_cmd_with_local_envvars(
torch_dist_udf_command, client_env_vars
)
cmd = (
wrap_cmd_with_extra_envvars(cmd, args.extra_envs)
if len(args.extra_envs) > 0
else cmd
)
cmd = "cd " + str(args.workspace) + "; " + cmd
clients_cmd.append(cmd)
if not dry_run:
thread_list.append(
execute_remote(
cmd, state_q, ip, args.ssh_port, username=args.ssh_username
)
)
# return commands of clients/servers directly if in dry run mode
if dry_run:
return clients_cmd, servers_cmd
# Start a cleanup process dedicated for cleaning up remote training jobs.
conn1, conn2 = multiprocessing.Pipe()
func = partial(get_all_remote_pids, hosts, args.ssh_port, udf_command)
process = multiprocessing.Process(target=cleanup_proc, args=(func, conn1))
process.start()
def signal_handler(signal, frame):
logging.info("Stop launcher")
# We need to tell the cleanup process to kill remote training jobs.
conn2.send("cleanup")
clean_alive_servers()
sys.exit(0)
signal.signal(signal.SIGINT, signal_handler)
err = 0
for thread in thread_list:
thread.join()
err_code = state_q.get()
if err_code != 0:
# Record err_code
# We record one of the error if there are multiple
err = err_code
# The training processes complete. We should tell the cleanup process to exit.
conn2.send("exit")
process.join()
if err != 0:
print("Task failed")
sys.exit(-1)
def main():
parser = argparse.ArgumentParser(description="Launch a distributed job")
parser.add_argument("--ssh_port", type=int, default=22, help="SSH Port.")
parser.add_argument(
"--ssh_username",
default="",
help="Optional. When issuing commands (via ssh) to cluster, use the provided username in the ssh cmd. "
"Example: If you provide --ssh_username=bob, then the ssh command will be like: 'ssh [email protected] CMD' "
"instead of 'ssh 1.2.3.4 CMD'",
)
parser.add_argument(
"--workspace",
type=str,
help="Path of user directory of distributed tasks. \
This is used to specify a destination location where \
the contents of current directory will be rsyncd",
)
parser.add_argument(
"--num_trainers",
type=int,
help="The number of trainer processes per machine",
)
parser.add_argument(
"--num_omp_threads",
type=int,
help="The number of OMP threads per trainer",
)
parser.add_argument(
"--num_samplers",
type=int,
default=0,
help="The number of sampler processes per trainer process",
)
parser.add_argument(
"--num_servers",
type=int,
help="The number of server processes per machine",
)
parser.add_argument(
"--part_config",
type=str,
help="The file (in workspace) of the partition config",
)
parser.add_argument(
"--ip_config",
type=str,
help="The file (in workspace) of IP configuration for server processes",
)
parser.add_argument(
"--num_server_threads",
type=int,
default=1,
help="The number of OMP threads in the server process. \
It should be small if server processes and trainer processes run on \
the same machine. By default, it is 1.",
)
parser.add_argument(
"--graph_format",
type=str,
default="csc",
help='The format of the graph structure of each partition. \
The allowed formats are csr, csc and coo. A user can specify multiple \
formats, separated by ",". For example, the graph format is "csr,csc".',
)
parser.add_argument(
"--extra_envs",
nargs="+",
type=str,
default=[],
help="Extra environment parameters need to be set. For example, \
you can set the LD_LIBRARY_PATH and NCCL_DEBUG by adding: \
--extra_envs LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH NCCL_DEBUG=INFO ",
)
parser.add_argument(
"--keep_alive",
action="store_true",
help="Servers keep alive when clients exit",
)
parser.add_argument(
"--server_name",
type=str,
help="Used to check whether there exist alive servers",
)
args, udf_command = parser.parse_known_args()
if args.keep_alive:
assert (
args.server_name is not None
), "Server name is required if '--keep_alive' is enabled."
print("Servers will keep alive even clients exit...")
assert len(udf_command) == 1, "Please provide user command line."
assert (
args.num_trainers is not None and args.num_trainers > 0
), "--num_trainers must be a positive number."
assert (
args.num_samplers is not None and args.num_samplers >= 0
), "--num_samplers must be a non-negative number."
assert (
args.num_servers is not None and args.num_servers > 0
), "--num_servers must be a positive number."
assert (
args.num_server_threads > 0
), "--num_server_threads must be a positive number."
assert (
args.workspace is not None
), "A user has to specify a workspace with --workspace."
assert (
args.part_config is not None
), "A user has to specify a partition configuration file with --part_config."
assert (
args.ip_config is not None
), "A user has to specify an IP configuration file with --ip_config."
if args.num_omp_threads is None:
# Here we assume all machines have the same number of CPU cores as the machine
# where the launch script runs.
args.num_omp_threads = max(
multiprocessing.cpu_count() // 2 // args.num_trainers, 1
)
print(
"The number of OMP threads per trainer is set to",
args.num_omp_threads,
)
udf_command = str(udf_command[0])
if "python" not in udf_command:
raise RuntimeError(
"DGL launching script can only support Python executable file."
)
submit_jobs(args, udf_command)
if __name__ == "__main__":
fmt = "%(asctime)s %(levelname)s %(message)s"
logging.basicConfig(format=fmt, level=logging.INFO)
main()