-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlauncher.py
131 lines (108 loc) · 4.18 KB
/
launcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright 2019 Stanislav Pidhorskyi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import os
import sys
import argparse
import logging
import torch
import torch.multiprocessing as mp
from torch import distributed
import inspect
def setup(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
distributed.init_process_group("nccl", rank=rank, world_size=world_size)
def cleanup():
distributed.destroy_process_group()
def _run(rank, world_size, fn, defaults, write_log, no_cuda, args):
if world_size > 1:
setup(rank, world_size)
if not no_cuda:
torch.cuda.set_device(rank)
cfg = defaults
config_file = args.config_file
if len(os.path.splitext(config_file)[1]) == 0:
config_file += '.yaml'
if not os.path.exists(config_file) and os.path.exists(os.path.join('configs', config_file)):
config_file = os.path.join('configs', config_file)
cfg.merge_from_file(config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
logger = logging.getLogger("logger")
logger.setLevel(logging.DEBUG)
output_dir = cfg.OUTPUT_DIR
os.makedirs(output_dir, exist_ok=True)
if rank == 0:
ch = logging.StreamHandler(stream=sys.stdout)
ch.setLevel(logging.DEBUG)
formatter = logging.Formatter("%(asctime)s %(name)s %(levelname)s: %(message)s")
ch.setFormatter(formatter)
logger.addHandler(ch)
if write_log:
filepath = os.path.join(output_dir, 'log.txt')
if isinstance(write_log, str):
filepath = write_log
fh = logging.FileHandler(filepath)
fh.setLevel(logging.DEBUG)
fh.setFormatter(formatter)
logger.addHandler(fh)
logger.info(args)
logger.info("World size: {}".format(world_size))
logger.info("Loaded configuration file {}".format(config_file))
with open(config_file, "r") as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
if not no_cuda:
torch.set_default_tensor_type('torch.cuda.FloatTensor')
device = torch.cuda.current_device()
print("Running on ", torch.cuda.get_device_name(device))
args.distributed = world_size > 1
args_to_pass = dict(cfg=cfg, logger=logger, local_rank=rank, world_size=world_size, distributed=args.distributed)
signature = inspect.signature(fn)
matching_args = {}
for key in args_to_pass.keys():
if key in signature.parameters.keys():
matching_args[key] = args_to_pass[key]
fn(**matching_args)
if world_size > 1:
cleanup()
def run(fn, defaults, description='', default_config='configs/experiment.yaml', world_size=1, write_log=True, no_cuda=False):
parser = argparse.ArgumentParser(description=description)
parser.add_argument(
"-c", "--config-file",
default=default_config,
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
import multiprocessing
cpu_count = multiprocessing.cpu_count()
os.environ["OMP_NUM_THREADS"] = str(max(1, int(cpu_count / world_size)))
del multiprocessing
args = parser.parse_args()
if world_size > 1:
mp.spawn(_run,
args=(world_size, fn, defaults, write_log, no_cuda, args),
nprocs=world_size,
join=True)
else:
_run(0, world_size, fn, defaults, write_log, no_cuda, args)