forked from KNMI/adaguc-server
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCImgWarpBilinear.cpp
1286 lines (1159 loc) · 46.5 KB
/
CImgWarpBilinear.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/******************************************************************************
*
* Project: ADAGUC Server
* Purpose: ADAGUC OGC Server
* Author: Maarten Plieger, plieger "at" knmi.nl
* Date: 2013-06-01
*
******************************************************************************
*
* Copyright 2013, Royal Netherlands Meteorological Institute (KNMI)
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
#include "CImgWarpBilinear.h"
#include "CImageDataWriter.h"
#include <gd.h>
#include <set>
#ifndef M_PI
#define M_PI 3.14159265358979323846 // pi
#endif
#ifndef rad2deg
#define rad2deg (180. / M_PI) // conversion for rad to deg
#endif
#ifndef deg2rad
#define deg2rad (M_PI / 180.) // conversion for deg to rad
#endif
#include "CImgRenderFieldVectors.h"
const char *CImgWarpBilinear::className = "CImgWarpBilinear";
void CImgWarpBilinear::render(CImageWarper *warper, CDataSource *sourceImage, CDrawImage *drawImage) {
#ifdef CImgWarpBilinear_DEBUG
CDBDebug("Render");
#endif
int dImageWidth = drawImage->Geo->dWidth + 1;
int dImageHeight = drawImage->Geo->dHeight + 1;
double dfSourceExtW = (sourceImage->dfBBOX[2] - sourceImage->dfBBOX[0]);
double dfSourceExtH = (sourceImage->dfBBOX[1] - sourceImage->dfBBOX[3]);
double dfSourceW = double(sourceImage->dWidth);
double dfSourceH = double(sourceImage->dHeight);
double dfSourcedExtW = dfSourceExtW / dfSourceW;
double dfSourcedExtH = dfSourceExtH / dfSourceH;
double dfSourceOrigX = sourceImage->dfBBOX[0];
double dfSourceOrigY = sourceImage->dfBBOX[3];
double dfDestExtW = drawImage->Geo->dfBBOX[2] - drawImage->Geo->dfBBOX[0];
double dfDestExtH = drawImage->Geo->dfBBOX[1] - drawImage->Geo->dfBBOX[3];
double dfDestOrigX = drawImage->Geo->dfBBOX[0];
double dfDestOrigY = drawImage->Geo->dfBBOX[3];
double dfDestW = double(dImageWidth);
double dfDestH = double(dImageHeight);
double hCellSizeX = (dfSourceExtW / dfSourceW) / 2.0f;
double hCellSizeY = (dfSourceExtH / dfSourceH) / 2.0f;
double dfPixelExtent[4];
int dPixelExtent[4];
bool tryToOptimizeExtent = false;
// CDBDebug("enableBarb=%d enableVectors=%d drawGridVectors=%d", enableBarb, enableVector, drawGridVectors);
if (tryToOptimizeExtent) {
// Reproject the boundingbox from the destination bbox:
for (int j = 0; j < 4; j++) dfPixelExtent[j] = drawImage->Geo->dfBBOX[j];
#ifdef CImgWarpBilinear_DEBUG
for (int j = 0; j < 4; j++) {
CDBDebug("dfPixelExtent: %d %f", j, dfPixelExtent[j]);
}
#endif
// warper->findExtent(sourceImage,dfPixelExtent);
warper->reprojBBOX(dfPixelExtent);
// Convert the bbox to source image pixel extent
dfPixelExtent[0] = ((dfPixelExtent[0] - dfSourceOrigX) / dfSourceExtW) * dfSourceW;
dfPixelExtent[1] = ((dfPixelExtent[1] - dfSourceOrigY) / dfSourceExtH) * dfSourceH;
dfPixelExtent[2] = ((dfPixelExtent[2] - dfSourceOrigX) / dfSourceExtW) * dfSourceW + 2;
dfPixelExtent[3] = ((dfPixelExtent[3] - dfSourceOrigY) / dfSourceExtH) * dfSourceH + 3;
// Make sure the images are not swapped in Y dir.
if (dfPixelExtent[1] > dfPixelExtent[3]) {
float t1 = dfPixelExtent[1];
dfPixelExtent[1] = dfPixelExtent[3];
dfPixelExtent[3] = t1;
}
// Make sure the images are not swapped in X dir.
if (dfPixelExtent[0] > dfPixelExtent[2]) {
float t1 = dfPixelExtent[0];
dfPixelExtent[0] = dfPixelExtent[2];
dfPixelExtent[2] = t1;
}
// Convert the pixel extent to integer values
// Also stretch the BBOX a bit, to hide edge effects
dPixelExtent[0] = int(dfPixelExtent[0]);
dPixelExtent[1] = int(dfPixelExtent[1]);
dPixelExtent[2] = int(dfPixelExtent[2]);
dPixelExtent[3] = int(dfPixelExtent[3]);
// Return if we are zoomed in to an infinite area
if (dPixelExtent[0] == dPixelExtent[2]) {
CDBDebug("Infinite area, dPixelExtent[0]==dPixelExtent[2]: %d==%d, stopping.... ", dPixelExtent[0], dPixelExtent[2]);
return;
}
if (dPixelExtent[1] == dPixelExtent[3]) {
CDBDebug("Infinite area, dPixelExtent[1]==dPixelExtent[3]: %d==%d, stopping.... ", dPixelExtent[1], dPixelExtent[3]);
return;
}
dPixelExtent[0] -= 2;
dPixelExtent[1] -= 4;
dPixelExtent[2] += 2;
dPixelExtent[3] += 2;
// Extent should lie within the source image size
if (dPixelExtent[0] < 0) dPixelExtent[0] = 0;
if (dPixelExtent[1] < 0) dPixelExtent[1] = 0;
if (dPixelExtent[2] > sourceImage->dWidth) dPixelExtent[2] = sourceImage->dWidth;
if (dPixelExtent[3] > sourceImage->dHeight) dPixelExtent[3] = sourceImage->dHeight;
} else {
dPixelExtent[0] = 0;
dPixelExtent[1] = 0;
dPixelExtent[2] = sourceImage->dWidth;
dPixelExtent[3] = sourceImage->dHeight;
}
// Get width and height of the pixel extent
int dPixelDestW = dPixelExtent[2] - dPixelExtent[0];
int dPixelDestH = dPixelExtent[3] - dPixelExtent[1];
size_t numDestPixels = (dPixelDestW + 1) * (dPixelDestH + 1);
// TODO increase field resolution in order to create better contour plots.
// Allocate memory
#ifdef CImgWarpBilinear_DEBUG
CDBDebug("Allocate, numDestPixels %d x %d", dPixelDestW, dPixelDestH);
#endif
int *dpDestX = new int[numDestPixels]; // refactor to numGridPoints
int *dpDestY = new int[numDestPixels];
class ValueClass {
public:
ValueClass() {
fpValues = NULL;
valueData = NULL;
}
~ValueClass() {
if (fpValues != NULL) {
delete[] fpValues;
fpValues = NULL;
}
if (valueData != NULL) {
delete[] valueData;
valueData = NULL;
}
}
float *fpValues;
float *valueData;
};
ValueClass *valObj = new ValueClass[sourceImage->getNumDataObjects()];
for (size_t dNr = 0; dNr < sourceImage->getNumDataObjects(); dNr++) {
#ifdef CImgWarpBilinear_DEBUG
CDBDebug("Allocating valObj[%d].fpValues: numDestPixels %d x %d", dNr, dPixelDestW, dPixelDestH);
CDBDebug("Allocating valObj[%d].valueData: imageSize %d x %d", dNr, dImageWidth, dImageHeight);
#endif
valObj[dNr].fpValues = new float[numDestPixels];
valObj[dNr].valueData = new float[dImageWidth * dImageHeight];
}
if (!sourceImage->getDataObject(0)->hasNodataValue) {
/* When the datasource has no nodata value, assign -9999.0f */
#ifdef CImgWarpBilinear_DEBUG
CDBDebug("Source image has no NoDataValue, assigning -9999.0f");
#endif
sourceImage->getDataObject(0)->dfNodataValue = -9999.0f;
sourceImage->getDataObject(0)->hasNodataValue = true;
} else {
/* Create a real nodata value instead of a nanf. */
if (!(sourceImage->getDataObject(0)->dfNodataValue == sourceImage->getDataObject(0)->dfNodataValue)) {
#ifdef CImgWarpBilinear_DEBUG
CDBDebug("Source image has no nodata value NaNf, changing this to -9999.0f");
#endif
sourceImage->getDataObject(0)->dfNodataValue = -9999.0f;
}
}
// Get the nodatavalue
float fNodataValue = sourceImage->getDataObject(0)->dfNodataValue;
// Reproject all the points
#ifdef CImgWarpBilinear_DEBUG
CDBDebug("Nodata value = %f", fNodataValue);
StopWatch_Stop("Start Reprojecting all the points");
char temp[32];
CDF::getCDFDataTypeName(temp, 31, sourceImage->getDataObject(0)->cdfVariable->getType());
CDBDebug("datatype: %s", temp);
for (int j = 0; j < 4; j++) {
CDBDebug("dPixelExtent[%d]=%d", j, dPixelExtent[j]);
}
#endif
#ifdef CImgWarpBilinear_DEBUG
StopWatch_Stop("Setting data objects");
#endif
for (int y = dPixelExtent[1]; y < dPixelExtent[3] + 1; y++) {
for (int x = dPixelExtent[0]; x < dPixelExtent[2] + 1; x++) {
size_t p = size_t((x - (dPixelExtent[0])) + ((y - (dPixelExtent[1])) * (dPixelDestW + 1)));
double destX, destY;
destX = dfSourcedExtW * double(x) + dfSourceOrigX;
destY = dfSourcedExtH * double(y) + dfSourceOrigY;
destX += hCellSizeX;
destY += hCellSizeY;
int status = warper->reprojpoint_inv(destX, destY);
destX -= dfDestOrigX;
destY -= dfDestOrigY;
destX /= dfDestExtW;
destY /= dfDestExtH;
destX *= dfDestW;
destY *= dfDestH;
dpDestX[p] = (int)destX; // 2-200;
dpDestY[p] = (int)destY; // 2+200;
// CDBDebug("%f - %f s:%d x:%d y:%d p:%d",destX,destY,status,x,y,p);
// drawImage->setPixelIndexed(dpDestX[p],dpDestY[p],240);
for (size_t varNr = 0; varNr < sourceImage->getNumDataObjects(); varNr++) {
void *data = sourceImage->getDataObject(varNr)->cdfVariable->data;
float *fpValues = valObj[varNr].fpValues;
int x1 = x;
int y1 = y;
if (x1 >= sourceImage->dWidth) {
x1 -= sourceImage->dWidth;
}
if (y1 >= sourceImage->dHeight) {
y1 -= sourceImage->dHeight;
}
// if(x1>=0&&x1<sourceImage->dWidth&&y>=0&&y<sourceImage->dHeight){
size_t sp = x1 + y1 * sourceImage->dWidth;
switch (sourceImage->getDataObject(varNr)->cdfVariable->getType()) {
case CDF_CHAR:
fpValues[p] = ((signed char *)data)[sp];
break;
case CDF_BYTE:
fpValues[p] = ((signed char *)data)[sp];
break;
case CDF_UBYTE:
fpValues[p] = ((unsigned char *)data)[sp];
break;
case CDF_SHORT:
fpValues[p] = ((signed short *)data)[sp];
break;
case CDF_USHORT:
fpValues[p] = ((unsigned short *)data)[sp];
break;
case CDF_INT:
fpValues[p] = ((signed int *)data)[sp];
break;
case CDF_UINT:
fpValues[p] = ((unsigned int *)data)[sp];
break;
case CDF_FLOAT:
fpValues[p] = ((float *)data)[sp];
break;
case CDF_DOUBLE:
fpValues[p] = ((double *)data)[sp];
break;
}
//}
if (!(fpValues[p] == fpValues[p])) fpValues[p] = fNodataValue;
if (status == 1) fpValues[p] = fNodataValue;
}
}
}
#ifdef CImgWarpBilinear_DEBUG
StopWatch_Stop("reprojection finished");
#endif
float *uValues = valObj[0].fpValues;
float *vValues = valObj[1].fpValues;
applyUVConversion(warper, sourceImage, enableVector, enableBarb, dPixelExtent, uValues, vValues);
for (size_t varNr = 0; varNr < sourceImage->getNumDataObjects(); varNr++) {
float *fpValues = valObj[varNr].fpValues;
float *valueData = valObj[varNr].valueData;
// Smooth the data (better for contour lines)
#ifdef CImgWarpBilinear_DEBUG
CDBDebug("start smoothing data with filter %d", smoothingFilter);
#endif
smoothData(fpValues, fNodataValue, smoothingFilter, dPixelDestW + 1, dPixelDestH + 1);
// Draw the obtained raster by using triangle tesselation (eg gouraud shading)
int xP[4], yP[4];
float vP[4];
size_t drawImageSize = dImageWidth * dImageHeight;
// Set default nodata values
for (size_t j = 0; j < drawImageSize; j++) valueData[j] = fNodataValue;
// start drawing triangles
#if defined(CImgWarpBilinear_DEBUG) || defined(CImgWarpBilinear_TIME)
StopWatch_Stop("Start triangle generation");
#endif
/*
*
* float cubicInterpolate (float p[4], float x) {
* return p[1] + 0.5 * x*(p[2] - p[0] + x*(2.0*p[0] - 5.0*p[1] + 4.0*p[2] - p[3] + x*(3.0*(p[1] - p[2]) + p[3] - p[0])));
}
float bicubicInterpolate (float p[4][4], float x, float y) {
float arr[4];
arr[0] = cubicInterpolate(p[0], y);
arr[1] = cubicInterpolate(p[1], y);
arr[2] = cubicInterpolate(p[2], y);
arr[3] = cubicInterpolate(p[3], y);
return cubicInterpolate(arr, x);
}
*/
int avgDX = 0;
for (int y = dPixelExtent[1]; y < dPixelExtent[3] - 1; y++) {
for (int x = dPixelExtent[0]; x < dPixelExtent[2]; x++) {
size_t p = size_t((x - (dPixelExtent[0])) + ((y - (dPixelExtent[1])) * (dPixelDestW + 1)));
size_t p00 = p;
size_t p10 = p + 1;
size_t p01 = p + dPixelDestW + 1;
size_t p11 = p + 1 + dPixelDestW + 1;
if (fpValues[p00] != fNodataValue && fpValues[p10] != fNodataValue && fpValues[p01] != fNodataValue && fpValues[p11] != fNodataValue) {
yP[0] = dpDestY[p00];
yP[1] = dpDestY[p01];
yP[2] = dpDestY[p10];
yP[3] = dpDestY[p11];
xP[0] = dpDestX[p00];
xP[1] = dpDestX[p01];
xP[2] = dpDestX[p10];
xP[3] = dpDestX[p11];
vP[0] = fpValues[p00];
vP[1] = fpValues[p01];
vP[2] = fpValues[p10];
vP[3] = fpValues[p11];
bool doDraw = true;
if (x == dPixelExtent[0]) avgDX = xP[2];
if (x == dPixelExtent[2] - 1) {
if (abs(avgDX - xP[0]) > dImageWidth / 4) {
doDraw = false;
}
if (abs(avgDX - xP[2]) > 0) {
if (abs(avgDX - xP[2]) < abs(xP[2] - xP[0]) / 4) {
doDraw = false;
// CDBDebug("%d %d (%d %d %d %d) ",avgDX-xP[2],xP[2]-xP[0],avgDX,xP[0],xP[1],xP[2]);
}
}
}
if (doDraw) {
fillQuadGouraud(valueData, vP, dImageWidth, dImageHeight, xP, yP);
}
}
}
}
}
// Copy pointerdatabitmap to graphics
#ifdef CImgWarpBilinear_DEBUG
CDBDebug("Start converting float bitmap to graphics");
#endif
float *valueData = valObj[0].valueData;
// Draw bilinear, simple variable
if (drawMap == true && enableShade == false && enableVector == false && enableBarb == false) {
for (int y = 0; y < dImageHeight; y++) {
for (int x = 0; x < dImageWidth; x++) {
setValuePixel(sourceImage, drawImage, x, y, valueData[x + y * dImageWidth]);
}
}
}
float *uValueData = valObj[0].valueData;
float *vValueData = valObj[1].valueData;
std::vector<CalculatedWindVector> windVectors =
renderBarbsAndVectors(warper, sourceImage, drawImage, enableShade, enableContour, enableBarb, drawMap, enableVector, drawGridVectors, dPixelExtent, uValueData, vValueData, dpDestX, dpDestY);
// Make Contour if desired
// drawContour(valueData,fNodataValue,500,5000,drawImage);
if (enableContour || enableShade) {
drawContour(valueData, fNodataValue, shadeInterval, sourceImage, drawImage, enableContour, enableShade, enableContour);
}
/*
* for(int y=dPixelExtent[1];y<dPixelExtent[3];y++){
* for(int x=dPixelExtent[0];x<dPixelExtent[2];x++){
* size_t p = size_t((x-(dPixelExtent[0]))+((y-(dPixelExtent[1]))*dPixelDestW));
* for(int y1=-2;y1<4;y1++){
* for(int x1=-2;x1<4;x1++){
* drawImage->setPixel(dpDestX[p]+x1,dpDestY[p]+y1,248);
* }
* }
*
* for(int y1=-1;y1<3;y1++){
* for(int x1=-1;x1<3;x1++){
* setValuePixel(sourceImage,drawImage,dpDestX[p]+x1,dpDestY[p]+y1,fpValues[p]);
}
}
}
}*/
/*if(drawMap==true)
* {
* for(int y=0;y<dImageHeight;y++){
* for(int x=0;x<dImageWidth;x++){
* setValuePixel(sourceImage,drawImage,x,y,valObj[0].valueData[x+y*dImageWidth]);
* }
* }
* }*/
// if (enableVector) drawImage->drawVector(x,y,direction,strength,240);
// if (enableBarb) drawImage->drawBarb(x,y,direction,strength,240,convertToKnots,flip);
//
// if (enableVector) {
// CalculatedWindVector wv;
// for (size_t sz=0; sz<windVectors.size();sz++) {
// wv=windVectors[sz];
// drawImage->drawVector(wv.x, wv.y, wv.dir, wv.strength, 240);
// }
// }
// if (enableBarb) {
// CalculatedWindVector wv;
// for (size_t sz=0; sz<windVectors.size();sz++) {
// wv=windVectors[sz];
// drawImage->drawBarb(wv.x, wv.y, wv.dir, wv.strength, 240,wv.convertToKnots,wv.flip);
// }
// }
if (enableVector) {
CalculatedWindVector wv;
for (size_t sz = 0; sz < windVectors.size(); sz++) {
wv = windVectors[sz];
drawImage->drawVector(wv.x, wv.y, wv.dir, wv.strength, 240);
}
}
if (enableBarb) {
CalculatedWindVector wv;
for (size_t sz = 0; sz < windVectors.size(); sz++) {
wv = windVectors[sz];
drawImage->drawBarb(wv.x, wv.y, wv.dir, wv.strength, 240, wv.convertToKnots, wv.flip);
}
}
// Clean up
delete[] dpDestX;
delete[] dpDestY;
delete[] valObj;
}
/**
* Checks at regular intervals wheter a contour line should be drawn or not.
* @param val The four pixels to check
* @param contourinterval The regular number to check against
* @return True on contour with this interval needed, false on do nothing.
*/
int checkContourRegularInterval(float *val, float &contourinterval) {
float allowedDifference = contourinterval / 100000;
float a, b;
a = (val[0] < val[1] ? val[0] : val[1]);
b = (val[2] < val[3] ? val[2] : val[3]);
float min = a < b ? a : b;
a = (val[0] > val[1] ? val[0] : val[1]);
b = (val[2] > val[3] ? val[2] : val[3]);
float max = a > b ? a : b;
float iMin = int(min / contourinterval);
if (min < 0) iMin -= 1;
iMin *= contourinterval;
float iMax = int(max / contourinterval);
if (max < 0) iMax -= 1;
iMax *= contourinterval + contourinterval;
float difference = iMax - iMin;
if ((iMax - iMin) / contourinterval < 3 && (iMax - iMin) / contourinterval > 1 && difference > allowedDifference) {
for (double c = iMin; c < iMax; c = c + contourinterval) {
if ((val[0] >= c && val[1] < c) || (val[0] > c && val[1] <= c) || (val[0] < c && val[1] >= c) || (val[0] <= c && val[1] > c) || (val[0] > c && val[2] <= c) || (val[0] >= c && val[2] < c) ||
(val[0] <= c && val[2] > c) || (val[0] < c && val[2] >= c)) {
return 1;
}
}
}
return 0;
}
/**
* Checks at defined intervals wheter a contour line should be drawn or not.
* @param val The four pixels to check
* @param contourinterval The numbers to check against
* @return True on contour with this interval needed, false on do nothing.
*/
int checkContourDefinedInterval(float *val, std::vector<float> *intervals) {
for (size_t j = 0; j < intervals->size(); j++) {
float c = (*intervals)[j];
if ((val[0] >= c && val[1] < c) || (val[0] > c && val[1] <= c) || (val[0] < c && val[1] >= c) || (val[0] <= c && val[1] > c) || (val[0] > c && val[2] <= c) || (val[0] >= c && val[2] < c) ||
(val[0] <= c && val[2] > c) || (val[0] < c && val[2] >= c)) {
return 1;
}
}
return 0;
}
/**
* Check if this requires contours
* @returns 16 bits unsigned short,
* where first 8 bytes represent which contourDefinition to use, incremented with one,
* and last 8 bytes represent which defined interval to use (in case when classes are defined)
* When Zero is returned, no contours should be used.
* e.g:
* contourDefinitionIndex = ((returnValue-1)%CONTOURDEFINITIONLOOKUPLENGTH)
* definedIntervalIndex within contourDefinition= (returnValue/CONTOURDEFINITIONLOOKUPLENGTH)-1
*/
unsigned short CImgWarpBilinear::checkIfContourRequired(float *val) {
for (size_t j = 0; j < contourDefinitions.size(); j++) {
// Check for defined intervals
if (contourDefinitions[j].definedIntervals.size() > 0) {
for (size_t i = 0; i < contourDefinitions[j].definedIntervals.size(); i++) {
float c = contourDefinitions[j].definedIntervals[i];
//(val[0]>=c&&val[1]<c)||(val[0]>c&&val[1]<=c)||(val[0]<c&&val[1]>=c)||(val[0]<=c&&val[1]>c)||
//(val[0]>c&&val[2]<=c)||(val[0]>=c&&val[2]<c)||(val[0]<=c&&val[2]>c)||(val[0]<c&&val[2]>=c)
if ((val[0] >= c && val[1] < c) || (val[0] > c && val[1] <= c) || (val[0] < c && val[1] >= c) || (val[0] <= c && val[1] > c) || (val[0] > c && val[2] <= c) || (val[0] >= c && val[2] < c) ||
(val[0] <= c && val[2] > c) || (val[0] < c && val[2] >= c)
) {
return j + (i + 1) * CONTOURDEFINITIONLOOKUPLENGTH + 1;
}
}
} else {
// Check for continuous intervals
if (contourDefinitions[j].continuousInterval != 0.0) {
if (checkContourRegularInterval(val, contourDefinitions[j].continuousInterval)) {
return j + 1;
}
}
}
}
return 0;
}
void CImgWarpBilinear::smoothData(float *valueData, float fNodataValue, int smoothWindow, int W, int H) {
// SmootH!
#ifdef CImgWarpBilinear_TIME
StopWatch_Stop("[SmoothData]");
#endif
if (smoothWindow == 0) return; // No smoothing.
size_t drawImageSize = W * H;
float *valueData2 = new float[W * H];
int smw = smoothWindow;
// Create distance window;
float distanceWindow[(smw + 1) * 2 * (smw + 1) * 2];
float distanceAmmount = 0;
int dWinP = 0;
for (int y1 = -smw; y1 < smw + 1; y1++) {
for (int x1 = -smw; x1 < smw + 1; x1++) {
float d = sqrt(x1 * x1 + y1 * y1);
// d=d*8;
d = 1 / (d + 1);
// d=1;
distanceWindow[dWinP++] = d;
distanceAmmount += d;
}
}
float d;
for (int y = 0; y < H; y++) {
for (int x = 0; x < W; x++) {
size_t p = size_t(x + y * W);
if (valueData[p] != fNodataValue) {
dWinP = 0;
distanceAmmount = 0;
valueData2[p] = 0;
for (int y1 = -smw; y1 < smw + 1; y1++) {
size_t yp = y1 * W;
for (int x1 = -smw; x1 < smw + 1; x1++) {
if (x1 + x < W && y1 + y < H && x1 + x >= 0 && y1 + y >= 0) {
float val = valueData[p + x1 + yp];
if (val != fNodataValue) {
d = distanceWindow[dWinP];
distanceAmmount += d;
valueData2[p] += val * d;
}
}
dWinP++;
}
}
if (distanceAmmount > 0) valueData2[p] /= distanceAmmount;
} else
valueData2[p] = fNodataValue;
}
}
for (size_t p = 0; p < drawImageSize; p++) {
valueData[p] = valueData2[p];
}
delete[] valueData2;
#ifdef CImgWarpBilinear_TIME
StopWatch_Stop("[/SmoothData]");
#endif
}
int CImgWarpBilinear::set(const char *pszSettings) {
// fprintf(stderr, "CImgWarpBilinear.set(%s)\n", pszSettings);
//"drawMap=false;drawContour=true;contourSmallInterval=1.0;contourBigInterval=10.0;"
if (pszSettings == NULL) return 0;
if (strlen(pszSettings) == 0) return 0;
contourDefinitions.clear();
CT::string settings(pszSettings);
CT::string *nodes = settings.splitToArray(";");
for (size_t j = 0; j < nodes->count; j++) {
CT::string *values = nodes[j].splitToArray("=");
if (values->count == 2) {
if (values[0].equals("drawMap")) {
if (values[1].equals("true")) drawMap = true;
if (values[1].equals("false")) drawMap = false;
}
if (values[0].equals("drawContour")) {
if (values[1].equals("true")) enableContour = true;
if (values[1].equals("false")) enableContour = false;
}
if (values[0].equals("drawShaded")) {
if (values[1].equals("true")) enableShade = true;
if (values[1].equals("false")) enableShade = false;
}
if (values[0].equals("drawVector")) {
if (values[1].equals("true")) enableVector = true;
if (values[1].equals("false")) enableVector = false;
}
if (values[0].equals("drawBarb")) {
if (values[1].equals("true")) enableBarb = true;
if (values[1].equals("false")) enableBarb = false;
}
if (values[0].equals("shadeInterval")) {
shadeInterval = values[1].toFloat();
// if(shadeInterval==0.0f){CDBWarning("invalid value given for shadeInterval %s",pszSettings);}
}
if (values[0].equals("smoothingFilter")) {
smoothingFilter = values[1].toInt();
if (smoothingFilter < 0 || smoothingFilter > 20) {
CDBWarning("invalid value given for smoothingFilter %s", pszSettings);
}
}
if (values[0].equals("contourBigInterval")) {
float f = values[1].toFloat();
if (f > 0) {
contourDefinitions.push_back(ContourDefinition(1.4, CColor(0, 0, 0, 255), CColor(0, 0, 0, 255), f, NULL));
}
}
if (values[0].equals("contourSmallInterval")) {
float f = values[1].toFloat();
if (f > 0) {
contourDefinitions.push_back(ContourDefinition(0.35, CColor(0, 0, 0, 255), CColor(0, 0, 0, 255), f, NULL));
}
}
if (values[0].equals("shading")) {
CColor fillcolor = CColor(0, 0, 0, 0);
CColor bgColor = CColor(0, 0, 0, 0);
float max, min;
bool foundColor = false;
bool hasBGColor = false;
CT::string *shadeSettings = values[1].splitToArray("$");
for (size_t l = 0; l < shadeSettings->count; l++) {
CT::string *kvp = shadeSettings[l].splitToArray("(");
if (kvp[0].equals("min")) min = kvp[1].toFloat();
if (kvp[0].equals("max")) max = kvp[1].toFloat();
// if(kvp[0].equals("fillcolor")){kvp[1].setSize(7);fillcolor=CColor(kvp[1].c_str());foundColor=true;}
if (kvp[0].equals("fillcolor")) {
kvp[1].setSize(kvp[1].length() - 1); // Remove trailing bracket (')')
fillcolor = CColor(kvp[1].c_str());
foundColor = true;
}
if (kvp[0].equals("bgcolor")) {
kvp[1].setSize(kvp[1].length() - 1); // Remove trailing bracket (')')
CDBDebug("Found bgcolor");
bgColor = CColor(kvp[1].c_str());
hasBGColor = true;
}
delete[] kvp;
}
shadeDefinitions.push_back(ShadeDefinition(min, max, fillcolor, foundColor, bgColor, hasBGColor));
delete[] shadeSettings;
}
if (values[0].equals("contourline")) {
float lineWidth = 1;
CColor linecolor = CColor(0, 0, 0, 255);
CColor textcolor = CColor(0, 0, 0, 255);
float interval = 0;
CT::string textformat = "";
CT::string classes = "";
CT::string *lineSettings = values[1].splitToArray("$");
for (size_t l = 0; l < lineSettings->count; l++) {
CT::string *kvp = lineSettings[l].splitToArray("(");
if (kvp->count == 2) {
int endOfKVP = kvp[1].lastIndexOf(")");
if (endOfKVP != -1) {
kvp[1].setSize(endOfKVP);
}
if (kvp[0].equals("width")) lineWidth = kvp[1].toFloat();
if (kvp[0].equals("interval")) {
interval = kvp[1].toFloat();
}
if (kvp[0].equals("classes")) {
classes.copy(kvp[1].c_str());
}
if (kvp[0].equals("linecolor")) {
kvp[1].setSize(7);
linecolor = CColor(kvp[1].c_str());
}
if (kvp[0].equals("textcolor")) {
kvp[1].setSize(7);
textcolor = CColor(kvp[1].c_str());
}
if (kvp[0].equals("textformatting")) {
textformat.copy(kvp[1].c_str(), kvp[1].length());
}
}
delete[] kvp;
}
if (classes.length() > 0) {
contourDefinitions.push_back(ContourDefinition(lineWidth, linecolor, textcolor, classes.c_str(), textformat.c_str()));
} else {
if (interval > 0) {
contourDefinitions.push_back(ContourDefinition(lineWidth, linecolor, textcolor, interval, textformat.c_str()));
}
}
delete[] lineSettings;
}
if (values[0].equals("drawGridVectors")) {
drawGridVectors = values[1].equals("true");
}
}
delete[] values;
}
delete[] nodes;
return 0;
}
bool IsTextTooClose(std::vector<Point> *textLocations, int x, int y) {
for (size_t j = 0; j < textLocations->size(); j++) {
int dx = x - (*textLocations)[j].x;
int dy = y - (*textLocations)[j].y;
if ((dx * dx + dy * dy) < 10 * 10) {
return true;
}
}
return false;
}
void CImgWarpBilinear::drawTextForContourLines(CDrawImage *drawImage, ContourDefinition *contourDefinition, int lineX, int lineY, int endX, int endY, std::vector<Point> *, float value,
CColor textColor, const char *fontLocation, float fontSize) {
/* Draw text */
CT::string text;
text.print(contourDefinition->textFormat.c_str(), value);
double angle;
if (lineY - endY != 0) {
angle = atan((-double(lineY - endY)) / (double(lineX - endX)));
} else {
angle = 0;
}
float cx = (lineX + endX) / 2;
float cy = (endY + lineY) / 2;
float tx = cx;
float ty = cy;
float ca = cos(angle);
float sa = sin(angle);
float offX = ((ca * text.length() * 2.3) + (sa * -2.3));
float offY = (-(sa * text.length() * 3.0) + (ca * -2.3));
tx -= offX;
ty -= offY;
int x = int(tx) + 1;
int y = int(ty) + 1;
drawImage->drawText(x, y, fontLocation, fontSize, angle, text.c_str(), textColor);
}
/*
Search window for xdir and ydir:
-1 0 1 (x)
-1 6 5 4
0 7 X 3
1 0 1 2
(y)
0 1 2 3 4 5 6 7 */
int xdir[] = {-1, 0, 1, 1, 1, 0, -1, -1};
int ydir[] = {1, 1, 1, 0, -1, -1, -1, 0};
/* 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
int xdirOuter[] = {-2, -1, 0, 1, 2, 2, 2, 2, 2, 1, 0, -1, -2, -2, -2, -2};
int ydirOuter[] = {2, 2, 2, 2, 2, 1, 0, -1, -2, -2, -2, -2, -2, -1, 0, 1};
#define MAX_LINE_SEGMENTS 1000
void CImgWarpBilinear::traverseLine(CDrawImage *drawImage, DISTANCEFIELDTYPE *distance, float *valueField, int lineX, int lineY, int dImageWidth, int dImageHeight, float lineWidth, CColor lineColor,
CColor textColor, ContourDefinition *contourDefinition, DISTANCEFIELDTYPE lineMask, bool, std::vector<Point> *textLocations, double scaling,
const char *fontLocation, float fontSize) {
size_t p = lineX + lineY * dImageWidth; /* Starting pointer */
bool foundLine = true; /* This function starts at the beginning of a line segment */
int maxLineDistance = 5; /* Maximum length of each line segment */
int currentLineDistance = maxLineDistance;
int lineSegmentsX[MAX_LINE_SEGMENTS + 1];
int lineSegmentsY[MAX_LINE_SEGMENTS + 1];
int lineSegmentCounter = 0;
/* Push the beginning of this line*/
lineSegmentsX[lineSegmentCounter] = lineX;
lineSegmentsY[lineSegmentCounter] = lineY;
float lineSegmentsValue = valueField[p];
float binnedLineSegmentsValue;
if (contourDefinition->definedIntervals.size() > 0) {
float closestValue;
int definedIntervalIndex = 0;
for (size_t j = 0; j < contourDefinition->definedIntervals.size(); j++) {
float c = contourDefinition->definedIntervals[j];
float d = fabs(lineSegmentsValue - c);
if (j == 0)
closestValue = d;
else {
if (d < closestValue) {
closestValue = d;
definedIntervalIndex = j;
}
}
}
binnedLineSegmentsValue = contourDefinition->definedIntervals[definedIntervalIndex];
} else {
binnedLineSegmentsValue = convertValueToClass(lineSegmentsValue + contourDefinition->continuousInterval / 2, contourDefinition->continuousInterval);
}
lineSegmentCounter++;
/* Use the distance field and walk the line */
while (foundLine) {
distance[p] &= ~lineMask; /* Indicate found, set to false */
/* Search around using the small search window and find the continuation of this line */
foundLine = false;
int nextLineX = lineX;
int nextLineY = lineY;
for (int j = 0; j < 8; j++) {
int tx = lineX + xdir[j];
int ty = lineY + ydir[j];
if (tx >= 0 && tx < dImageWidth && ty >= 0 && ty < dImageHeight) {
p = tx + ty * dImageWidth;
if (distance[p] & lineMask && !foundLine) {
nextLineX = tx;
nextLineY = ty;
foundLine = true;
}
distance[p] &= ~lineMask; /* Indicate found, set to false */
}
}
/* Search line with outer window. */
if (!foundLine) {
// Try to find the line with an outer window...
for (int j = 0; j < 16; j++) {
int tx = lineX + xdirOuter[j];
int ty = lineY + ydirOuter[j];
if (tx >= 0 && tx < dImageWidth && ty >= 0 && ty < dImageHeight) {
p = tx + ty * dImageWidth;
if (distance[p] & lineMask && !foundLine) {
nextLineX = tx;
nextLineY = ty;
foundLine = true;
break;
}
}
}
}
// if (!foundLine){
// drawImage->rectangle(lineX-5, lineY-5, lineX+5,lineY+5, 240);
// }
lineX = nextLineX;
lineY = nextLineY;
/* Decrease the max currentLineDist counter,
when zero, the max line distance is reached
and we should add a line segment */
currentLineDistance--;
if (currentLineDistance <= 0 || foundLine == false) {
currentLineDistance = maxLineDistance;
if (lineSegmentCounter < MAX_LINE_SEGMENTS) {
lineSegmentsX[lineSegmentCounter] = lineX;
lineSegmentsY[lineSegmentCounter] = lineY;
lineSegmentCounter++;
/* If we have reached max line segments, stop it */
if (lineSegmentCounter >= MAX_LINE_SEGMENTS) {
foundLine = false;
}
}
}
}
// textLocations->clear();
/* Now draw this line */
drawImage->moveTo(lineSegmentsX[0], lineSegmentsY[0]);
bool doDrawText = !contourDefinition->textFormat.empty();
bool textSkip = false;
bool textOn = false;
int drawTextAtEveryNPixels = 50 * int(scaling);
int drawTextAngleNSteps = 0;
int drawTextAngleNSteps5 = 5 * int(scaling);
int drawTextAngleNSteps3 = 3 * int(scaling);
float scaledLineWidth = lineWidth * scaling;
for (int j = 0; j < lineSegmentCounter; j++) {
if (doDrawText) {
if (j % drawTextAtEveryNPixels == drawTextAngleNSteps && j + drawTextAngleNSteps5 < lineSegmentCounter) {
textOn = false;
if (IsTextTooClose(textLocations, lineSegmentsX[j], lineSegmentsY[j]) == false) {
textSkip = false;
textLocations->push_back(Point(lineSegmentsX[j], lineSegmentsY[j]));
this->drawTextForContourLines(drawImage, contourDefinition, lineSegmentsX[j + drawTextAngleNSteps3], lineSegmentsY[j + drawTextAngleNSteps3], lineSegmentsX[j + drawTextAngleNSteps3 + 1],
lineSegmentsY[j + drawTextAngleNSteps3 + 1], textLocations, binnedLineSegmentsValue, textColor, fontLocation, fontSize * scaling);
textOn = true;
} else {
textSkip = true;
}
}
if (j % drawTextAtEveryNPixels == drawTextAngleNSteps && textOn && !textSkip) {
drawImage->endLine();
}
if (j % drawTextAtEveryNPixels > drawTextAngleNSteps5 || textSkip) {
drawImage->lineTo(lineSegmentsX[j], lineSegmentsY[j], scaledLineWidth, lineColor);
}
} else {
drawImage->lineTo(lineSegmentsX[j], lineSegmentsY[j], scaledLineWidth, lineColor);
}
}
drawImage->endLine();
}
void CImgWarpBilinear::drawContour(float *valueData, float fNodataValue, float interval, CDataSource *dataSource, CDrawImage *drawImage, bool drawLine, bool drawShade, bool drawText) {
CStyleConfiguration *styleConfiguration = dataSource->getStyle(); // TODO SLOW
// When using min/max stretching, the shadeclasses need to be extended according to its shade interval
if (dataSource->stretchMinMax == true) {
if (dataSource->statistics != NULL) {
float legendInterval = interval;
float minValue = (float)dataSource->statistics->getMinimum();
float maxValue = (float)dataSource->statistics->getMaximum();
float iMin = convertValueToClass(minValue, legendInterval);
float iMax = convertValueToClass(maxValue, legendInterval) + legendInterval;
// Calculate new scale and offset for this:
float ls = 240 / ((iMax - iMin));
float lo = -(iMin * ls);
styleConfiguration->legendScale = ls;
styleConfiguration->legendOffset = lo;
}
}
double scaling = dataSource->getContourScaling();
float fontSize = dataSource->srvParams->cfg->WMS[0]->ContourFont[0]->attr.size.toDouble();
const char *fontLocation = dataSource->srvParams->cfg->WMS[0]->ContourFont[0]->attr.location.c_str();
// float ival = interval;
// float ivalLine = interval;
// float idval=int(ival+0.5);
// if(idval<1)idval=1;
// TODO