-
Notifications
You must be signed in to change notification settings - Fork 26
/
finetune.py
136 lines (115 loc) · 4.83 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from data_module import TextDatasetQA, custom_data_collator
from dataloader import CustomTrainer
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, set_seed
import hydra
import transformers
import os
from peft import LoraConfig, get_peft_model
from pathlib import Path
from omegaconf import OmegaConf
from utils import get_model_identifiers_from_yaml
def find_all_linear_names(model):
cls = torch.nn.Linear
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, cls):
names = name.split('.')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if 'lm_head' in lora_module_names: # needed for 16-bit
lora_module_names.remove('lm_head')
return list(lora_module_names)
def print_trainable_parameters(model):
"""
Prints the number of trainable parameters in the model.
"""
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
print(
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
)
@hydra.main(version_base=None, config_path="config", config_name="finetune")
def main(cfg):
if os.environ.get('LOCAL_RANK') is not None:
local_rank = int(os.environ.get('LOCAL_RANK', '0'))
device_map = {'': local_rank}
set_seed(cfg.seed)
os.environ["WANDB_DISABLED"] = "true"
model_cfg = get_model_identifiers_from_yaml(cfg.model_family)
model_id = model_cfg["hf_key"]
Path(cfg.save_dir).mkdir(parents=True, exist_ok=True)
# save the cfg file
#if master process
if os.environ.get('LOCAL_RANK') is None or local_rank == 0:
with open(f'{cfg.save_dir}/cfg.yaml', 'w') as f:
OmegaConf.save(cfg, f)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token
max_length = 500
torch_format_dataset = TextDatasetQA(cfg.data_path, tokenizer=tokenizer, model_family = cfg.model_family, max_length=max_length, split=cfg.split)
batch_size = cfg.batch_size
gradient_accumulation_steps = cfg.gradient_accumulation_steps
# --nproc_per_node gives the number of GPUs per = num_devices. take it from torchrun/os.environ
num_devices = int(os.environ.get('WORLD_SIZE', 1))
print(f"num_devices: {num_devices}")
max_steps = int(cfg.num_epochs*len(torch_format_dataset))//(batch_size*gradient_accumulation_steps*num_devices)
# max_steps=5
print(f"max_steps: {max_steps}")
training_args = transformers.TrainingArguments(
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
# warmup_steps=max(1, max_steps//10),
warmup_steps=max(1, max_steps//cfg.num_epochs),
max_steps=max_steps,
learning_rate=cfg.lr,
bf16=True,
bf16_full_eval=True,
logging_steps=max(1,max_steps//20),
logging_dir=f'{cfg.save_dir}/logs',
output_dir=cfg.save_dir,
optim="paged_adamw_32bit",
save_steps=max_steps,
save_only_model=True,
ddp_find_unused_parameters= False,
evaluation_strategy="no",
deepspeed='config/ds_config.json',
weight_decay = cfg.weight_decay,
seed = cfg.seed,
)
model = AutoModelForCausalLM.from_pretrained(model_id, use_flash_attention_2=model_cfg["flash_attention2"]=="true", torch_dtype=torch.bfloat16, trust_remote_code = True)
# Hot fix for https://discuss.huggingface.co/t/help-with-llama-2-finetuning-setup/50035
model.generation_config.do_sample = True
if model_cfg["gradient_checkpointing"] == "true":
model.gradient_checkpointing_enable()
if cfg.LoRA.r != 0:
config = LoraConfig(
r=cfg.LoRA.r,
lora_alpha=cfg.LoRA.alpha,
target_modules=find_all_linear_names(model),
lora_dropout=cfg.LoRA.dropout,
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, config)
model.enable_input_require_grads()
trainer = CustomTrainer(
model=model,
train_dataset=torch_format_dataset,
eval_dataset=torch_format_dataset,
args=training_args,
data_collator=custom_data_collator,
)
model.config.use_cache = False # silence the warnings. Please re-enable for inference!
trainer.train()
#save the model
if cfg.LoRA.r != 0:
model = model.merge_and_unload()
model.save_pretrained(cfg.save_dir)
tokenizer.save_pretrained(cfg.save_dir)
if __name__ == "__main__":
main()