forked from PythonOT/POT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_OT_1D.py
89 lines (60 loc) · 1.81 KB
/
plot_OT_1D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# -*- coding: utf-8 -*-
"""
======================================
Optimal Transport for 1D distributions
======================================
This example illustrates the computation of EMD and Sinkhorn transport plans
and their visualization.
"""
# Author: Remi Flamary <[email protected]>
#
# License: MIT License
# sphinx_gallery_thumbnail_number = 3
import numpy as np
import matplotlib.pylab as pl
import ot
import ot.plot
from ot.datasets import make_1D_gauss as gauss
##############################################################################
# Generate data
# -------------
#%% parameters
n = 100 # nb bins
# bin positions
x = np.arange(n, dtype=np.float64)
# Gaussian distributions
a = gauss(n, m=20, s=5) # m= mean, s= std
b = gauss(n, m=60, s=10)
# loss matrix
M = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)))
M /= M.max()
##############################################################################
# Plot distributions and loss matrix
# ----------------------------------
#%% plot the distributions
pl.figure(1, figsize=(6.4, 3))
pl.plot(x, a, 'b', label='Source distribution')
pl.plot(x, b, 'r', label='Target distribution')
pl.legend()
#%% plot distributions and loss matrix
pl.figure(2, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, M, 'Cost matrix M')
##############################################################################
# Solve EMD
# ---------
#%% EMD
# use fast 1D solver
G0 = ot.emd_1d(x, x, a, b)
# Equivalent to
# G0 = ot.emd(a, b, M)
pl.figure(3, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, G0, 'OT matrix G0')
##############################################################################
# Solve Sinkhorn
# --------------
#%% Sinkhorn
lambd = 1e-3
Gs = ot.sinkhorn(a, b, M, lambd, verbose=True)
pl.figure(4, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, Gs, 'OT matrix Sinkhorn')
pl.show()