forked from Uminosachi/sd-webui-inpaint-anything
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ia_get_dataset_colormap.py
416 lines (368 loc) · 10.3 KB
/
ia_get_dataset_colormap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
# Lint as: python2, python3
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Visualizes the segmentation results via specified color map.
Visualizes the semantic segmentation results by the color map
defined by the different datasets. Supported colormaps are:
* ADE20K (http://groups.csail.mit.edu/vision/datasets/ADE20K/).
* Cityscapes dataset (https://www.cityscapes-dataset.com).
* Mapillary Vistas (https://research.mapillary.com).
* PASCAL VOC 2012 (http://host.robots.ox.ac.uk/pascal/VOC/).
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
# from six.moves import range
# Dataset names.
_ADE20K = 'ade20k'
_CITYSCAPES = 'cityscapes'
_MAPILLARY_VISTAS = 'mapillary_vistas'
_PASCAL = 'pascal'
# Max number of entries in the colormap for each dataset.
_DATASET_MAX_ENTRIES = {
_ADE20K: 151,
_CITYSCAPES: 256,
_MAPILLARY_VISTAS: 66,
_PASCAL: 512,
}
def create_ade20k_label_colormap():
"""Creates a label colormap used in ADE20K segmentation benchmark.
Returns:
A colormap for visualizing segmentation results.
"""
return np.asarray([
[0, 0, 0],
[120, 120, 120],
[180, 120, 120],
[6, 230, 230],
[80, 50, 50],
[4, 200, 3],
[120, 120, 80],
[140, 140, 140],
[204, 5, 255],
[230, 230, 230],
[4, 250, 7],
[224, 5, 255],
[235, 255, 7],
[150, 5, 61],
[120, 120, 70],
[8, 255, 51],
[255, 6, 82],
[143, 255, 140],
[204, 255, 4],
[255, 51, 7],
[204, 70, 3],
[0, 102, 200],
[61, 230, 250],
[255, 6, 51],
[11, 102, 255],
[255, 7, 71],
[255, 9, 224],
[9, 7, 230],
[220, 220, 220],
[255, 9, 92],
[112, 9, 255],
[8, 255, 214],
[7, 255, 224],
[255, 184, 6],
[10, 255, 71],
[255, 41, 10],
[7, 255, 255],
[224, 255, 8],
[102, 8, 255],
[255, 61, 6],
[255, 194, 7],
[255, 122, 8],
[0, 255, 20],
[255, 8, 41],
[255, 5, 153],
[6, 51, 255],
[235, 12, 255],
[160, 150, 20],
[0, 163, 255],
[140, 140, 140],
[250, 10, 15],
[20, 255, 0],
[31, 255, 0],
[255, 31, 0],
[255, 224, 0],
[153, 255, 0],
[0, 0, 255],
[255, 71, 0],
[0, 235, 255],
[0, 173, 255],
[31, 0, 255],
[11, 200, 200],
[255, 82, 0],
[0, 255, 245],
[0, 61, 255],
[0, 255, 112],
[0, 255, 133],
[255, 0, 0],
[255, 163, 0],
[255, 102, 0],
[194, 255, 0],
[0, 143, 255],
[51, 255, 0],
[0, 82, 255],
[0, 255, 41],
[0, 255, 173],
[10, 0, 255],
[173, 255, 0],
[0, 255, 153],
[255, 92, 0],
[255, 0, 255],
[255, 0, 245],
[255, 0, 102],
[255, 173, 0],
[255, 0, 20],
[255, 184, 184],
[0, 31, 255],
[0, 255, 61],
[0, 71, 255],
[255, 0, 204],
[0, 255, 194],
[0, 255, 82],
[0, 10, 255],
[0, 112, 255],
[51, 0, 255],
[0, 194, 255],
[0, 122, 255],
[0, 255, 163],
[255, 153, 0],
[0, 255, 10],
[255, 112, 0],
[143, 255, 0],
[82, 0, 255],
[163, 255, 0],
[255, 235, 0],
[8, 184, 170],
[133, 0, 255],
[0, 255, 92],
[184, 0, 255],
[255, 0, 31],
[0, 184, 255],
[0, 214, 255],
[255, 0, 112],
[92, 255, 0],
[0, 224, 255],
[112, 224, 255],
[70, 184, 160],
[163, 0, 255],
[153, 0, 255],
[71, 255, 0],
[255, 0, 163],
[255, 204, 0],
[255, 0, 143],
[0, 255, 235],
[133, 255, 0],
[255, 0, 235],
[245, 0, 255],
[255, 0, 122],
[255, 245, 0],
[10, 190, 212],
[214, 255, 0],
[0, 204, 255],
[20, 0, 255],
[255, 255, 0],
[0, 153, 255],
[0, 41, 255],
[0, 255, 204],
[41, 0, 255],
[41, 255, 0],
[173, 0, 255],
[0, 245, 255],
[71, 0, 255],
[122, 0, 255],
[0, 255, 184],
[0, 92, 255],
[184, 255, 0],
[0, 133, 255],
[255, 214, 0],
[25, 194, 194],
[102, 255, 0],
[92, 0, 255],
])
def create_cityscapes_label_colormap():
"""Creates a label colormap used in CITYSCAPES segmentation benchmark.
Returns:
A colormap for visualizing segmentation results.
"""
colormap = np.zeros((256, 3), dtype=np.uint8)
colormap[0] = [128, 64, 128]
colormap[1] = [244, 35, 232]
colormap[2] = [70, 70, 70]
colormap[3] = [102, 102, 156]
colormap[4] = [190, 153, 153]
colormap[5] = [153, 153, 153]
colormap[6] = [250, 170, 30]
colormap[7] = [220, 220, 0]
colormap[8] = [107, 142, 35]
colormap[9] = [152, 251, 152]
colormap[10] = [70, 130, 180]
colormap[11] = [220, 20, 60]
colormap[12] = [255, 0, 0]
colormap[13] = [0, 0, 142]
colormap[14] = [0, 0, 70]
colormap[15] = [0, 60, 100]
colormap[16] = [0, 80, 100]
colormap[17] = [0, 0, 230]
colormap[18] = [119, 11, 32]
return colormap
def create_mapillary_vistas_label_colormap():
"""Creates a label colormap used in Mapillary Vistas segmentation benchmark.
Returns:
A colormap for visualizing segmentation results.
"""
return np.asarray([
[165, 42, 42],
[0, 192, 0],
[196, 196, 196],
[190, 153, 153],
[180, 165, 180],
[102, 102, 156],
[102, 102, 156],
[128, 64, 255],
[140, 140, 200],
[170, 170, 170],
[250, 170, 160],
[96, 96, 96],
[230, 150, 140],
[128, 64, 128],
[110, 110, 110],
[244, 35, 232],
[150, 100, 100],
[70, 70, 70],
[150, 120, 90],
[220, 20, 60],
[255, 0, 0],
[255, 0, 0],
[255, 0, 0],
[200, 128, 128],
[255, 255, 255],
[64, 170, 64],
[128, 64, 64],
[70, 130, 180],
[255, 255, 255],
[152, 251, 152],
[107, 142, 35],
[0, 170, 30],
[255, 255, 128],
[250, 0, 30],
[0, 0, 0],
[220, 220, 220],
[170, 170, 170],
[222, 40, 40],
[100, 170, 30],
[40, 40, 40],
[33, 33, 33],
[170, 170, 170],
[0, 0, 142],
[170, 170, 170],
[210, 170, 100],
[153, 153, 153],
[128, 128, 128],
[0, 0, 142],
[250, 170, 30],
[192, 192, 192],
[220, 220, 0],
[180, 165, 180],
[119, 11, 32],
[0, 0, 142],
[0, 60, 100],
[0, 0, 142],
[0, 0, 90],
[0, 0, 230],
[0, 80, 100],
[128, 64, 64],
[0, 0, 110],
[0, 0, 70],
[0, 0, 192],
[32, 32, 32],
[0, 0, 0],
[0, 0, 0],
])
def create_pascal_label_colormap():
"""Creates a label colormap used in PASCAL VOC segmentation benchmark.
Returns:
A colormap for visualizing segmentation results.
"""
colormap = np.zeros((_DATASET_MAX_ENTRIES[_PASCAL], 3), dtype=int)
ind = np.arange(_DATASET_MAX_ENTRIES[_PASCAL], dtype=int)
for shift in reversed(list(range(8))):
for channel in range(3):
colormap[:, channel] |= bit_get(ind, channel) << shift
ind >>= 3
return colormap
def get_ade20k_name():
return _ADE20K
def get_cityscapes_name():
return _CITYSCAPES
def get_mapillary_vistas_name():
return _MAPILLARY_VISTAS
def get_pascal_name():
return _PASCAL
def bit_get(val, idx):
"""Gets the bit value.
Args:
val: Input value, int or numpy int array.
idx: Which bit of the input val.
Returns:
The "idx"-th bit of input val.
"""
return (val >> idx) & 1
def create_label_colormap(dataset=_PASCAL):
"""Creates a label colormap for the specified dataset.
Args:
dataset: The colormap used in the dataset.
Returns:
A numpy array of the dataset colormap.
Raises:
ValueError: If the dataset is not supported.
"""
if dataset == _ADE20K:
return create_ade20k_label_colormap()
elif dataset == _CITYSCAPES:
return create_cityscapes_label_colormap()
elif dataset == _MAPILLARY_VISTAS:
return create_mapillary_vistas_label_colormap()
elif dataset == _PASCAL:
return create_pascal_label_colormap()
else:
raise ValueError('Unsupported dataset.')
def label_to_color_image(label, dataset=_PASCAL):
"""Adds color defined by the dataset colormap to the label.
Args:
label: A 2D array with integer type, storing the segmentation label.
dataset: The colormap used in the dataset.
Returns:
result: A 2D array with floating type. The element of the array
is the color indexed by the corresponding element in the input label
to the dataset color map.
Raises:
ValueError: If label is not of rank 2 or its value is larger than color
map maximum entry.
"""
if label.ndim != 2:
raise ValueError('Expect 2-D input label. Got {}'.format(label.shape))
if np.max(label) >= _DATASET_MAX_ENTRIES[dataset]:
raise ValueError(
'label value too large: {} >= {}.'.format(
np.max(label), _DATASET_MAX_ENTRIES[dataset]))
colormap = create_label_colormap(dataset)
return colormap[label]
def get_dataset_colormap_max_entries(dataset):
return _DATASET_MAX_ENTRIES[dataset]