forked from Wenhui-Yu/LCFN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_MF.py
47 lines (38 loc) · 2.42 KB
/
model_MF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
## basic baseline MF_BPR
import tensorflow as tf
class model_MF(object):
def __init__(self,n_users,n_items,emb_dim,lr,lamda):
self.model_name = 'MF'
self.n_users = n_users
self.n_items = n_items
self.emb_dim = emb_dim
self.lr = lr
self.lamda = lamda
self.users = tf.placeholder(tf.int32, shape=(None,))
self.pos_items = tf.placeholder(tf.int32, shape=(None,))
self.neg_items = tf.placeholder(tf.int32, shape=(None,))
self.keep_prob = tf.placeholder(tf.float32, shape=(None))
self.items_in_train_data = tf.placeholder(tf.float32, shape=(None, None))
self.top_k = tf.placeholder(tf.int32, shape=(None))
self.user_embeddings = tf.Variable(
tf.random_normal([self.n_users, self.emb_dim], mean=0.01, stddev=0.02, dtype=tf.float32),
name='user_embeddings')
self.item_embeddings = tf.Variable(
tf.random_normal([self.n_items, self.emb_dim], mean=0.01, stddev=0.02, dtype=tf.float32),
name='item_embeddings')
self.u_embeddings = tf.nn.embedding_lookup(self.user_embeddings, self.users)
self.pos_i_embeddings = tf.nn.embedding_lookup(self.item_embeddings, self.pos_items)
self.neg_i_embeddings = tf.nn.embedding_lookup(self.item_embeddings, self.neg_items)
self.loss = self.create_bpr_loss(self.u_embeddings, self.pos_i_embeddings, self.neg_i_embeddings)
self.opt = tf.train.GradientDescentOptimizer(learning_rate=self.lr)
self.updates = self.opt.minimize(self.loss, var_list=[self.user_embeddings, self.item_embeddings])
self.all_ratings = tf.matmul(self.u_embeddings, self.item_embeddings, transpose_a=False, transpose_b=True)
self.all_ratings += self.items_in_train_data ## set a very small value for the items appearing in the training set to make sure they are at the end of the sorted list
self.top_items = tf.nn.top_k(self.all_ratings, k=self.top_k, sorted=True).indices
def create_bpr_loss(self, users, pos_items, neg_items):
pos_scores = tf.reduce_sum(tf.multiply(users, pos_items), axis=1)
neg_scores = tf.reduce_sum(tf.multiply(users, neg_items), axis=1)
maxi = tf.log(tf.nn.sigmoid(pos_scores - neg_scores))
regularizer = tf.nn.l2_loss(users) + tf.nn.l2_loss(pos_items) + tf.nn.l2_loss(neg_items)
loss = tf.negative(tf.reduce_sum(maxi)) + self.lamda * regularizer
return loss