forked from tidyverse/ggplot2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot-build.r
86 lines (69 loc) · 2.96 KB
/
plot-build.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#' Build ggplot for rendering.
#'
#' This function takes the plot object, and performs all steps necessary to
#' produce an object that can be rendered. This function outputs two pieces:
#' a list of data frames (one for each layer), and a panel object, which
#' contain all information about axis limits, breaks etc.
#'
#' @param plot ggplot object
#' @seealso \code{\link{print.ggplot}} and \code{link{benchplot}} for
#' for functions that contain the complete set of steps for generating
#' a ggplot2 plot.
#' @keywords internal
#' @export
ggplot_build <- function(plot) {
if (length(plot$layers) == 0) stop("No layers in plot", call.=FALSE)
plot <- plot_clone(plot)
layers <- plot$layers
layer_data <- lapply(layers, function(y) y$data)
scales <- plot$scales
# Apply function to layer and matching data
dlapply <- function(f) {
out <- vector("list", length(data))
for(i in seq_along(data)) {
out[[i]] <- f(d = data[[i]], p = layers[[i]])
}
out
}
# Initialise panels, add extra data for margins & missing facetting
# variables, and add on a PANEL variable to data
panel <- new_panel()
panel <- train_layout(panel, plot$facet, layer_data, plot$data)
data <- map_layout(panel, plot$facet, layer_data, plot$data)
# Compute aesthetics to produce data with generalised variable names
data <- dlapply(function(d, p) p$compute_aesthetics(d, plot))
data <- lapply(data, add_group)
# Transform all scales
data <- lapply(data, scales_transform_df, scales = scales)
# Map and train positions so that statistics have access to ranges
# and all positions are numeric
scale_x <- function() scales$get_scales("x")
scale_y <- function() scales$get_scales("y")
panel <- train_position(panel, data, scale_x(), scale_y())
data <- map_position(panel, data, scale_x(), scale_y())
# Apply and map statistics
data <- calculate_stats(panel, data, layers)
data <- dlapply(function(d, p) p$map_statistic(d, plot))
data <- lapply(data, order_groups)
# Make sure missing (but required) aesthetics are added
scales_add_missing(plot, c("x", "y"))
# Reparameterise geoms from (e.g.) y and width to ymin and ymax
data <- dlapply(function(d, p) p$reparameterise(d))
# Apply position adjustments
data <- dlapply(function(d, p) p$adjust_position(d))
# Reset position scales, then re-train and map. This ensures that facets
# have control over the range of a plot: is it generated from what's
# displayed, or does it include the range of underlying data
reset_scales(panel)
panel <- train_position(panel, data, scale_x(), scale_y())
data <- map_position(panel, data, scale_x(), scale_y())
# Train and map non-position scales
npscales <- scales$non_position_scales()
if (npscales$n() > 0) {
lapply(data, scales_train_df, scales = npscales)
data <- lapply(data, scales_map_df, scales = npscales)
}
# Train coordinate system
panel <- train_ranges(panel, plot$coordinates)
list(data = data, panel = panel, plot = plot)
}