forked from TigerResearch/TigerBot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweb_demo.py
138 lines (113 loc) · 4.7 KB
/
web_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import torch
import os
import gradio as gr
from accelerate import infer_auto_device_map, dispatch_model
from accelerate.utils import get_balanced_memory
from transformers import AutoTokenizer
import mdtex2html
from infer_stream import get_model
os.environ["TOKENIZERS_PARALLELISM"] = "false"
max_generate_length: int = 1024
model_path = "tigerbot-7b-sft"
print(f"loading model: {model_path}...")
model = get_model(model_path)
from infer_stream import stream_chat
max_memory = get_balanced_memory(model)
device_map = infer_auto_device_map(model, max_memory=max_memory,
no_split_module_classes=["BloomBlock"])
print("Using the following device map for the model:", device_map)
model = dispatch_model(model, device_map=device_map, offload_buffers=True)
device = torch.cuda.current_device()
tokenizer = AutoTokenizer.from_pretrained(
model_path,
cache_dir=None,
model_max_length=max_generate_length,
padding_side="left",
truncation_side='left',
padding=True,
truncation=True
)
if tokenizer.model_max_length is None or tokenizer.model_max_length > 1024:
tokenizer.model_max_length = 1024
"""Override Chatbot.postprocess"""
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
def parse_text(text):
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f'<br></code></pre>'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>"+line
text = "".join(lines)
return text
def predict(input, chatbot, max_input_length, max_generate_length, top_p, temperature, history):
chatbot.append((parse_text(input), ""))
for response, history in stream_chat(
model.generate,
tokenizer,
input,
history,
max_input_length=max_input_length,
max_generate_length=max_generate_length,
top_p=top_p,
temperature=temperature
):
chatbot[-1] = (parse_text(input), parse_text(response))
yield chatbot, history
def reset_user_input():
return gr.update(value='')
def reset_state():
return [], []
with gr.Blocks() as demo:
gr.HTML("""<h1 align="center">TigerBot</h1>""")
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
container=False)
with gr.Column(min_width=32, scale=1):
submitBtn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_input_length = gr.Slider(0, 1024, value=512, step=1.0, label="Maximum input length", interactive=True)
max_generate_length = gr.Slider(0, 2048, value=1024, step=1.0, label="Maximum generate length", interactive=True)
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True)
history = gr.State([])
submitBtn.click(predict, [user_input, chatbot, max_input_length, max_generate_length, top_p, temperature, history], [chatbot, history],
show_progress=True)
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
demo.queue().launch(share=False, inbrowser=True)