Skip to content

luckyfriends/spark-xml

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

72 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Spark XML Library Build Status codecov.io

  • A library for parsing and querying XML data with Apache Spark, for Spark SQL and DataFrames. The structure and test tools are mostly copied from databricks/spark-csv.

  • This package supports to process format-free XML files in a distributed way, unlike JSON datasource in Spark restricts in-line JSON format.

Requirements

This library requires Spark 1.3+

Linking

You can link against this library in your program at the following coordiates:

Scala 2.10

groupId: com.databricks
artifactId: spark-xml_2.10
version: 0.2.0

Scala 2.11

groupId: com.databricks
artifactId: spark-xml_2.11
version: 0.2.0

Using with Spark shell

This package can be added to Spark using the --jars command line option. For example, to include it when starting the spark shell:

$ bin/spark-shell --packages com.databricks:spark-xml_2.11:0.2.0

Features

This package allows reading XML files in local or distributed filesystem as Spark DataFrames. When reading files the API accepts several options:

  • path: location of files. Similar to Spark can accept standard Hadoop globbing expressions.
  • rowTag: The row tag of your xml files to treat as a row. For example, in this xml <books> <book><book> ...</books>, the appropriate value would be book. Default is ROW.
  • samplingRatio: Sampling ratio for inferring schema (0.0 ~ 1). Default is 1. Possible types are StructType, ArrayType, StringType, LongType, DoubleType and NullType, unless user provides a schema for this.
  • excludeAttribute : Whether you want to exclude tags of elements as fields or not. Default is false.
  • treatEmptyValuesAsNulls : Whether you want to treat whitespaces as a null value. Default is false.
  • failFast : Whether you want to fail when it fails to parse malformed rows in XML files, instead of dropping the rows. Default is false.

When writing files the API accepts several options:

  • path: location of files. Similar to Spark can accept standard Hadoop globbing expressions.
  • rowTag: The row tag of your xml files to treat as a row. For example, in this xml <books> <book><book> ...</books>, the appropriate value would be book. Default is ROW.
  • rootTag: The root tag of your xml files to treat as the root. For example, in this xml <books> <book><book> ...</books>, the appropriate value would be books. Default is ROWS.
  • nullValue: The value to write null value. Default is string null.

Currently it supports the shorten name useage. You can use just xml instead of com.databricks.spark.xml from Spark 1.5.0+

These examples use a XML file available for download here:

$ wget https://github.com/databricks/spark-xml/raw/master/src/test/resources/books.xml

SQL API

Spark-xml can infer data types:

CREATE TABLE books
USING com.databricks.spark.xml
OPTIONS (path "books.xml", rowTag "book")

You can also specify column names and types in DDL. In this case, we do not infer schema.

CREATE TABLE books (author string, description string, genre string, id string, price double, publish_date string, title string)
USING com.databricks.spark.xml
OPTIONS (path "books.xml", rowTag "book")

Scala API

Spark 1.4+:

import org.apache.spark.sql.SQLContext

val sqlContext = new SQLContext(sc)
val df = sqlContext.read
    .format("com.databricks.spark.xml")
    .option("rowTag", "book")
    .load("books.xml")

val selectedData = df.select("author", "id")
selectedData.write
    .format("com.databricks.spark.xml")
    .option("rootTag", "books")
    .option("rowTag", "book")
    .save("newbooks.xml")

You can manually specify the schema when reading data:

import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.types.{StructType, StructField, StringType, DoubleType};

val sqlContext = new SQLContext(sc)
val customSchema = StructType(
    StructField("author", StringType, nullable = true),
    StructField("description", StringType, nullable = true),
    StructField("genre", StringType ,nullable = true),
    StructField("id", StringType, nullable = true),
    StructField("price", DoubleType, nullable = true),
    StructField("publish_date", StringType, nullable = true),
    StructField("title", StringType, nullable = true))


val df = sqlContext.read
    .format("com.databricks.spark.xml")
    .option("rowTag", "book")
    .schema(customSchema)
    .load("books.xml")

val selectedData = df.select("author", "id")
selectedData.write
    .format("com.databricks.spark.xml")
    .option("rootTag", "books")
    .option("rowTag", "book")
    .save("newbooks.xml")

Spark 1.3:

import org.apache.spark.sql.SQLContext

val sqlContext = new SQLContext(sc)
val df = sqlContext.load(
    "com.databricks.spark.xml",
    Map("path" -> "books.xml", "rowTag" -> "book"))

val selectedData = df.select("author", "id")
selectedData.save("com.databricks.spark.xml",
	SaveMode.ErrorIfExists,
	Map("path" -> "newbooks.xml", "rootTag" -> "books", "rowTag" -> "book"))

You can manually specify the schema when reading data:

import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.types.{StructType, StructField, StringType, IntegerType};

val sqlContext = new SQLContext(sc)
val customSchema = StructType(
    StructField("author", StringType, nullable = true),
    StructField("description", StringType, nullable = true),
    StructField("genre", StringType ,nullable = true),
    StructField("id", StringType, nullable = true),
    StructField("price", DoubleType, nullable = true),
    StructField("publish_date", StringType, nullable = true),
    StructField("title", StringType, nullable = true))

val df = sqlContext.load(
    "com.databricks.spark.xml",
    schema = customSchema,
    Map("path" -> "books.xml", "rowTag" -> "book"))

val selectedData = df.select("author", "id")
selectedData.save("com.databricks.spark.xml",
	SaveMode.ErrorIfExists,
	Map("path" -> "newbooks.xml", "rootTag" -> "books", "rowTag" -> "book"))

Java API

Spark 1.4+:

import org.apache.spark.sql.SQLContext

SQLContext sqlContext = new SQLContext(sc);
DataFrame df = sqlContext.read()
    .format("com.databricks.spark.xml")
    .option("rowTag", "book")
    .load("books.xml");

df.select("author", "id").write()
    .format("com.databricks.spark.xml")
    .option("rootTag", "books")
    .option("rowTag", "book")
    .save("newbooks.xml");

You can manually specify schema:

import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.*;

SQLContext sqlContext = new SQLContext(sc);
StructType customSchema = new StructType(
    new StructField("author", StringType, true),
    new StructField("description", StringType, true),
    new StructField("genre", StringType, true),
    new StructField("id", StringType, true),
    new StructField("price", DoubleType, true),
    new StructField("publish_date", StringType, true),
    new StructField("title", StringType, true));

DataFrame df = sqlContext.read()
    .format("com.databricks.spark.xml")
    .option("rowTag", "book")
    .schema(customSchema)
    .load("books.xml");

df.select("author", "id").write()
    .format("com.databricks.spark.xml")
    .option("rootTag", "books")
    .option("rowTag", "book")
    .save("newbooks.xml");

Spark 1.3:

import org.apache.spark.sql.SQLContext

SQLContext sqlContext = new SQLContext(sc);

HashMap<String, String> options = new HashMap<String, String>();
options.put("rowTag", "book");
options.put("path", "books.xml");
DataFrame df = sqlContext.load("com.databricks.spark.xml", options);

HashMap<String, String> options = new HashMap<String, String>();
options.put("rowTag", "book");
options.put("rootTag", "books");
options.put("path", "newbooks.xml");
df.select("author", "id").save("com.databricks.spark.xml", SaveMode.ErrorIfExists, options)

You can manually specify schema:

import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.*;

SQLContext sqlContext = new SQLContext(sc);
StructType customSchema = new StructType(
    new StructField("author", StringType, true),
    new StructField("description", StringType, true),
    new StructField("genre", StringType, true),
    new StructField("id", StringType, true),
    new StructField("price", DoubleType, true),
    new StructField("publish_date", StringType, true),
    new StructField("title", StringType, true));

HashMap<String, String> options = new HashMap<String, String>();
options.put("rowTag", "book");
options.put("path", "books.xml");
DataFrame df = sqlContext.load("com.databricks.spark.xml", customSchema, options);

HashMap<String, String> options = new HashMap<String, String>();
options.put("rowTag", "book");
options.put("rootTag", "books");
options.put("path", "newbooks.xml");
df.select("author", "id").save("com.databricks.spark.xml", SaveMode.ErrorIfExists, options)

Python API

Spark 1.4+:

from pyspark.sql import SQLContext
sqlContext = SQLContext(sc)

df = sqlContext.read.format('com.databricks.spark.xml').options(rowTag='book').load('books.xml')
df.select("author", "id").collect()

You can manually specify schema:

from pyspark.sql import SQLContext
from pyspark.sql.types import *

sqlContext = SQLContext(sc)
customSchema = StructType([ \
    StructField("author", StringType(), True), \
    StructField("description", StringType(), True), \
    StructField("genre", StringType(), True), \
    StructField("id", StringType(), True), \
    StructField("price", DoubleType(), True), \
    StructField("publish_date", StringType(), True), \
    StructField("title", StringType(), True]))

df = sqlContext.read \
    .format('com.databricks.spark.xml') \
    .options(rowTag='book') \
    .load('books.xml', schema = customSchema)

df.select("author", "id").write \
    .format('com.databricks.spark.xml') \
    .options(rowTag='book', rootTag='books') \
    .save('newbooks.xml')

Spark 1.3:

from pyspark.sql import SQLContext
sqlContext = SQLContext(sc)

df = sqlContext.load(source="com.databricks.spark.xml", rowTag = 'book', path = 'books.xml')
df.select("author", "id").save('newbooks.xml', rootTag = 'books', rowTag = 'book', path = 'newbooks.xml')

You can manually specify schema:

from pyspark.sql import SQLContext
from pyspark.sql.types import *

sqlContext = SQLContext(sc)
customSchema = StructType([ \
    StructField("author", StringType(), True), \
    StructField("description", StringType(), True), \
    StructField("genre", StringType(), True), \
    StructField("id", StringType(), True), \
    StructField("price", DoubleType(), True), \
    StructField("publish_date", StringType(), True), \
    StructField("title", StringType(), True]))

df = sqlContext.load(source="com.databricks.spark.xml", rowTag = 'book', schema = customSchema, path = 'books.xml')
df.select("author", "id").save('newbooks.xml', rootTag = 'books', rowTag = 'book', path = 'newbooks.xml')

R API

Spark 1.4+:

Automatically infer schema (data types)

library(SparkR)

Sys.setenv('SPARKR_SUBMIT_ARGS'='"--packages" "com.databricks:spark-xml_2.10:1.3.0" "sparkr-shell"')
sqlContext <- sparkRSQL.init(sc)

df <- read.df(sqlContext, "books.xml", source = "com.databricks.spark.xml", rowTag = "book")

# In this case, `rootTag` is set to "ROWS" and `rowTag` is set to "ROW".
write.df(df, "newbooks.csv", "com.databricks.spark.xml", "overwrite")

You can manually specify schema:

library(SparkR)

Sys.setenv('SPARKR_SUBMIT_ARGS'='"--packages" "com.databricks:spark-csv_2.10:1.3.0" "sparkr-shell"')
sqlContext <- sparkRSQL.init(sc)
customSchema <- structType(
    structField("author", "string"),
    structField("description", "string"),
    structField("genre", "string"),
    structField("id", "string"),
    structField("price", "double"),
    structField("publish_date", "string"),
    structField("title", "string"))

df <- read.df(sqlContext, "books.xml", source = "com.databricks.spark.xml", rowTag = "book")

# In this case, `rootTag` is set to "ROWS" and `rowTag` is set to "ROW".
write.df(df, "newbooks.csv", "com.databricks.spark.xml", "overwrite")

Building From Source

This library is built with SBT, which is automatically downloaded by the included shell script. To build a JAR file simply run sbt/sbt package from the project root. The build configuration includes support for both Scala 2.10 and 2.11.

Acknowledgements

This project was initially created by HyukjinKwon and donated to Databricks.

About

XML data source for Spark SQL and DataFrames

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Scala 80.0%
  • Python 12.3%
  • Shell 6.0%
  • Java 1.7%