Skip to content
/ iob-soc Public template
forked from IObundle/iob-soc

RISC-V System on Chip Template

License

Notifications You must be signed in to change notification settings

luis-fava/iob-soc

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

IOb-SoC

IOb-SoC is a System-on-Chip (SoC) template comprising an open-source RISC-V processor (picorv32), an internal SRAM memory subsystem, a UART (iob-uart), and an optional interface to an external memory. If the external memory interface is selected, an instruction L1 cache, a data L1 cache and a shared L2 cache are added to the system. The L2 cache communicates with a 3rd party memory controller IP (typically a DDR controller) using an AXI4 master bus.

Virtual Machine

IOb-SoC can be run on a VirtualBox VM. This way, the system can be quickly tried without investing much time installing the tools:

  1. Donwload and install Oracle's VirtualBox
  2. Download IOb-SoC VM

Operating Systems

IOb-SoC can be used in Linux Operating Systems. The following instructions work for CentOS 7 and Ubuntu 18.04 or 20.04 LTS.

Clone the repository

The first step is to clone this repository. IOb-SoC uses git sub-module trees, and GitHub will ask for your password for each downloaded module if you clone by https. To avoid this, setup GitHub access with ssh and type:

git clone --recursive [email protected]:IObundle/iob-soc.git
cd iob-soc

Alternatively, you can still clone this repository using https if you cache your credentials before cloning the repository, using: git config --global credential.helper 'cache --timeout=<time_in_seconds>'

Configure your SoC

To configure your system edit the system.mk file, which can be found at the repository root. This file has the system configuration variables; hopefully, each variable is explained by a comment.

Set environment variables for local or remote building and running

The various simulators, FPGA compilers and FPGA boards may run locally or remotely. For running a tool remotely, you need to set two environmental variables: the server logical name and the server user name. Consider placing these settings in your .bashrc file, so that they apply to every session.

Set up the remote simulator server

Using open-source simulator Icarus Verilog as an example, note that in hardware/simulation/icarus/Makefile, the variable for the server logical name, SIM_SERVER, is set to IVSIM_SERVER, and the variable for the user name, SIM_USER, is set to IVSIM_USER. If you do not set these variables the simulator will run locally. To run the simulator on server mysimserver.myorg.com as user ivsimuser, set the following environmental variables beforehand:

export IVSIM_SERVER=ivsimserver.myorg.com
export IVSIM_USER=ivsimuser

Set up the remote FPGA toolchain and board servers

Using the CYCLONEV-GT-DK board as an example, note that in hardware/fpga/quartus/CYCLONEV-GT-DK/Makefile the variable for the FPGA tool server logical name, FPGA_SERVER, is set to QUARTUS_SERVER, and the variable for the user name, FPGA_USER, is set to QUARTUS_USER; the variable for the board server, BOARD_SERVER, is set to CYC5_SERVER, and the variable for the board user, BOARD_USER, is set to CYC5_USER. As in the previous example, set these variables as follows:

export QUARTUS_SERVER=quartusserver.myorg.com
export QUARTUS_USER=quartususer
export CYC5_SERVER=cyc5server.myorg.com
export CYC5_USER=cyc5username

Set up the remote ASIC toolchain server

For example, in hardware/asic/umc130/Makefile, the variable for the server logical name, ASIC_SERVER, is set to CADENCE_SERVER, and the variable for the user name ASIC_USER is set to CADENCE_USER. Hence, you need to set the latter variables as in the following example:

export CADENCE_SERVER=cadenceserver.myorg.com
export CADENCE_USER=cadenceuser

In each remote server, the environment variables for the executable paths and license servers used must be defined as in the following example:

export QUARTUSPATH=/path/to/quartus
export VIVADOPATH=/path/to/vivado
...
export [email protected];lic_or_dat_file

Simulate the system

To simulate IOb-SoC, the simulator must be installed, either locally or remotely, and must have a run directory under the hardware/simulation directory, such as the hardware/simulation/icarus directory. To simulate, type:

make [sim] [SIMULATOR=<simulator directory name>] [<control parameters>]

<simulator directory name> is the name of the simulator's run directory,

<control parameters> are system configuration parameters passed in the command line, overriding those in the system.mk file. Example control parameters are INIT_MEM=0 RUN_EXTMEM=1.

To visualise simulation waveforms use the VCD=1 control parameter. It will open the Gtkwave waveform visualisation program.

To clean simulation generated files, type:

make sim-clean [SIMULATOR=<simulator directory name>] 

For more details, read the Makefile in each simulator directory. The Makefile includes the Makefile segment simulation.mk, which contains statements that apply to any simulator. In turn, simulation.mk includes the Makefile segment system.mk, which contains main system parameters. The Makefile in the simulator's directory, with the segments recursively included as described, is construed as a single large Makefile.

Emulate the system on PC

If there are embedded software compilation or runtime issues you can emulate the system on a PC to debug the issues. To emulate IOb-SoC's embedded software on a PC, type:

make pc-emul [<control parameters>]

where <control parameters> are system configuration parameters passed in the command line, overriding those in the system.mk file. Example control parameters are INIT_MEM=0 RUN_EXTMEM=1.

To clean the PC compilation generated files, type:

make pc-emul-clean

For more details, read the Makefile in the software/pc-emul directory. As explained for the simulation make file, note the Makefile segments recursively included.

Build and run on FPGA board

To build and run IOb-SoC on an FPGA board, the FPGA design tools must be installed, either locally or remotely, the board must be attached to the local host or to a remote host, and each board must have a build directory under the hardware/fpga/<tool> directory, for example the hardware/fpga/vivado/BASYS3 directory. The FPGA tools and board hosts may be different.

To build only, type

make fpga-build [BOARD=<board directory name>] [<control parameters>]

where <board directory name> is the name of the board's run directory, and <control parameters> are system configuration parameters passed in the command line, overriding those in the system.mk file. For example,

make fpga-build BOARD=BASYS3 INIT_MEM=0 RUN_EXTMEM=1

For more details read the Makefile in the board directory, and follow the recursively included Makefile segments as explained before.

To build and run, type:

make fpga-run [BOARD=<board directory name>] [<control parameters>]

The FPGA is loaded with the configuration bitstream before running. However, this step is skipped if the bitstream checksum matches that of the last loaded bitstream, kept in file /tmp/<board directory name>.load. If, for some reason, the run gets stuck, you may interrupt it with Ctr-C. Then, you may try again forcing the bitstream to be reloaded using control parameter FORCE=1.

If many users are trying to run the same FPGA board they will be queued in file /tmp/<board directory name>.queue. Users will orderly load their bitstream onto the board and start running it. After a successful run or Ctr-C interrupt, the user is de-queued.

To clean the FPGA compilation generated files, type

make fpga-clean [BOARD=<board directory name>]

Compile the documentation

To compile documents, the LaTeX document preparation software must be installed. Each document that can be compiled has a build directory under the documentdirectory. Currently there are two document build directories: presentation and pb (product brief). The document to build is specified by the DOC control parameter. To compile the document, type:

make doc [DOC=<document directory name>]

To clean the document's build directory, type:

make doc-clean [DOC=<document directory name>]

For more details, read the Makefile in each document's directory, and follow the recursively included Makefile segments as explained before.

Testing

Simulation test

To run a series of simulation tests on the simulator selected by the SIMULATOR variable, type:

make test-simulator [SIMULATOR=<simulator directory>]

The above command produces a test log file called test.log in the simulator's directory. The test.log file is compared with the test.expected file, which resides in the same directory; if they differ, the test fails; otherwise, it passes.

To run the series of simulation tests on all the simulators listed in the SIM_LIST variable, type:

make test-all-simulators [SIM_LIST="<simulator directory list>"]

where <simulator directory list> is the list of sub-directories in directory hardware/simulation, which correspond to simulator names.

To clean the files produced when testing all simulators, type:

make clean-all-simulators

Board test

To compile and run a series of board tests on the board selected by the BOARD variable, type:

make test-board [BOARD=<board directory name>]

The above command produces a test log file called test.log in the board's directory. The test.log file is compared with the test.expected file, which resides in the same directory; if they differ, the test fails; otherwise, it passes.

To run the series of board tests on all the boards listed in the BOARD_LIST variable, type:

make test-all-boards [BOARD_LIST="<board directory name list>"]

To clean the files produced when testing all boards, type:

make clean-all-boards

ASIC test

To compile and run a series of ASIC tests on the ASIC technology node selected by the ASIC_NODE variable, type:

make test-asic [ASIC_NODE=<ASIC technology node directory name>]

The above command creates the file hardware/simulation/xcelium/test.log, which is compared to file hardware/asic/<ASIC technology node name>/test.expected; if they differ, the test is aborted.

To run the series of ASIC tests on all the ASIC technology nodes listed in the ASIC_NODE_LIST variable, type:

make test-all-asics [ASIC_NODE_LIST="<ASIC technology node directory name list>"]

To clean the files produced when testing all ASIC technology nodes, type:

make clean-all-asics

Documentation test

To compile and test the document selected by the DOC, variable, type:

make test-doc [DOC=<document directory name>]

The resulting Latex .aux file is compared with a known-good .aux file. If the match the test passes; otherwise it fails.

To test all documents listed in the DOC_LIST variable, type:

make test-all-docs [DOC_LIST="<document directory name list>"]

To clean the files produced when testing all documents, type:

make clean-all-docs

Total test

To run all simulation, FPGA board, ASIC technology node and documentation tests, type:

make test

Cleaning

The following command will clean the selected simulation, board, ASIC technology node and document directories, locally and in the remote servers:

make clean

Instructions for Installing the RISC-V GNU Compiler Toolchain

Get sources and checkout the supported stable version

git clone https://github.com/riscv/riscv-gnu-toolchain
git checkout 2021.01.26

Prerequisites

For the Ubuntu OS and its variants:

sudo apt install autoconf automake autotools-dev curl python3 python2 libmpc-dev libmpfr-dev libgmp-dev gawk build-essential bison flex texinfo gperf libtool patchutils bc zlib1g-dev libexpat-dev

For CentOS and its variants:

sudo yum install autoconf automake python3 python2 libmpc-devel mpfr-devel gmp-devel gawk  bison flex texinfo patchutils gcc gcc-c++ zlib-devel expat-devel

Installation

cd riscv-gnu-toolchain
./configure --prefix=/path/to/riscv --enable-multilib
sudo make -j$(nproc)

This will take a while. After it is done, type:

export PATH=$PATH:/path/to/riscv/bin

The above command should be added to your ~/.bashrc file, so that you do not have to type it on every session.

About

RISC-V System on Chip Template

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Tcl 41.0%
  • Verilog 31.0%
  • Makefile 16.9%
  • TeX 5.8%
  • C++ 2.1%
  • C 2.0%
  • Other 1.2%