-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathceps.py
56 lines (43 loc) · 1.32 KB
/
ceps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# This code is supporting material for the book
# Building Machine Learning Systems with Python
# by Willi Richert and Luis Pedro Coelho
# published by PACKT Publishing
#
# It is made available under the MIT License
import os
import glob
import sys
import numpy as np
import scipy
import scipy.io.wavfile
from scikits.talkbox.features import mfcc
from utils import GENRE_DIR
def write_ceps(ceps, fn):
"""
Write the MFCC to separate files to speed up processing.
"""
base_fn, ext = os.path.splitext(fn)
data_fn = base_fn + ".ceps"
np.save(data_fn, ceps)
print("Written %s"%data_fn)
def create_ceps(fn):
sample_rate, X = scipy.io.wavfile.read(fn)
ceps, mspec, spec = mfcc(X)
write_ceps(ceps, fn)
def read_ceps(genre_list, base_dir=GENRE_DIR):
X = []
y = []
for label, genre in enumerate(genre_list):
for fn in glob.glob(os.path.join(base_dir, genre, "*.ceps.npy")):
ceps = np.load(fn)
num_ceps = len(ceps)
X.append(
np.mean(ceps[int(num_ceps / 10):int(num_ceps * 9 / 10)], axis=0))
y.append(label)
return np.array(X), np.array(y)
if __name__ == "__main__":
os.chdir(GENRE_DIR)
glob_wav = os.path.join(sys.argv[1], "*.wav")
print(glob_wav)
for fn in glob.glob(glob_wav):
create_ceps(fn)