Skip to content

Commit 9682f47

Browse files
committed
RFCT Update figure generation code
1 parent 91da359 commit 9682f47

6 files changed

+38
-32
lines changed

ch07/boston1.py

+8-6
Original file line numberDiff line numberDiff line change
@@ -27,11 +27,13 @@
2727
rmse = np.sqrt(lr.residues_/len(x))
2828
print('RMSE: {}'.format(rmse))
2929

30+
fig, ax = plt.subplots()
31+
# Plot a diagonal (for reference):
32+
ax.plot([0, 50], [0, 50], '-', color=(.9,.3,.3), lw=4)
33+
3034
# Plot the prediction versus real:
31-
plt.scatter(lr.predict(x), boston.target)
35+
ax.scatter(lr.predict(x), boston.target)
3236

33-
# Plot a diagonal (for reference):
34-
plt.plot([0, 50], [0, 50], '-', color=(.9,.3,.3), lw=4)
35-
plt.xlabel('predicted')
36-
plt.ylabel('real')
37-
plt.savefig('Figure_07_08.png')
37+
ax.set_xlabel('predicted')
38+
ax.set_ylabel('real')
39+
fig.savefig('Figure_07_08.png')

ch07/figure1_2.py

+12-11
Original file line numberDiff line numberDiff line change
@@ -14,9 +14,10 @@
1414
boston = load_boston()
1515

1616
# Index number five in the number of rooms
17-
plt.scatter(boston.data[:, 5], boston.target)
18-
plt.xlabel("Number of rooms (RM)")
19-
plt.ylabel("House Price")
17+
fig,ax = plt.subplots()
18+
ax.scatter(boston.data[:, 5], boston.target)
19+
ax.set_xlabel("Number of rooms (RM)")
20+
ax.set_ylabel("House Price")
2021

2122
x = boston.data[:, 5]
2223
# fit (used below) takes a two-dimensional array as input. We use np.atleast_2d
@@ -29,9 +30,9 @@
2930
lr = LinearRegression(fit_intercept=False)
3031
lr.fit(x, y)
3132

32-
plt.plot([0, boston.data[:, 5].max() + 1],
33+
ax.plot([0, boston.data[:, 5].max() + 1],
3334
[0, lr.predict(boston.data[:, 5].max() + 1)], '-', lw=4)
34-
plt.savefig('Figure1.png', dpi=150)
35+
fig.savefig('Figure1.png')
3536

3637
mse = mean_squared_error(y, lr.predict(x))
3738
rmse = np.sqrt(mse)
@@ -42,14 +43,14 @@
4243

4344
lr.fit(x, y)
4445

45-
plt.clf()
46-
plt.xlabel("Number of rooms (RM)")
47-
plt.ylabel("House Price")
48-
plt.scatter(boston.data[:, 5], boston.target)
46+
fig,ax = plt.subplots()
47+
ax.set_xlabel("Number of rooms (RM)")
48+
ax.set_ylabel("House Price")
49+
ax.scatter(boston.data[:, 5], boston.target)
4950
xmin = x.min()
5051
xmax = x.max()
51-
plt.plot([xmin, xmax], lr.predict([[xmin], [xmax]]) , '-', lw=4)
52-
plt.savefig('Figure2.png', dpi=150)
52+
ax.plot([xmin, xmax], lr.predict([[xmin], [xmax]]) , '-', lw=4)
53+
fig.savefig('Figure2.png')
5354

5455
mse = mean_squared_error(y, lr.predict(x))
5556
print("Mean squared error (of training data): {:.3}".format(mse))

ch07/figure3.py

+8-7
Original file line numberDiff line numberDiff line change
@@ -8,12 +8,13 @@
88
from sklearn.linear_model import LinearRegression, Lasso
99
import numpy as np
1010
from sklearn.datasets import load_boston
11-
import pylab as plt
11+
from matplotlib import pyplot as plt
1212

1313
boston = load_boston()
14-
plt.scatter(boston.data[:, 5], boston.target)
15-
plt.xlabel("Number of rooms (RM)")
16-
plt.ylabel("House Price")
14+
fig, ax = plt.subplots()
15+
ax.scatter(boston.data[:, 5], boston.target)
16+
ax.set_xlabel("Number of rooms (RM)")
17+
ax.set_ylabel("House Price")
1718

1819

1920
x = boston.data[:, 5]
@@ -24,9 +25,9 @@
2425

2526
lr = LinearRegression()
2627
lr.fit(x, y)
27-
plt.plot([xmin, xmax], lr.predict([[xmin], [xmax]]), ':', lw=4, label='OLS model')
28+
ax.plot([xmin, xmax], lr.predict([[xmin], [xmax]]), ':', lw=4, label='OLS model')
2829

2930
las = Lasso()
3031
las.fit(x, y)
31-
plt.plot([xmin, xmax], las.predict([ [xmin], [xmax] ]), '-', lw=4, label='Lasso model')
32-
plt.savefig('Figure3.png', dpi=150)
32+
ax.plot([xmin, xmax], las.predict([ [xmin], [xmax] ]), '-', lw=4, label='Lasso model')
33+
fig.savefig('Figure3.png')

ch07/figure4.py

+7-6
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@
1212
from sklearn.linear_model import LinearRegression
1313
from sklearn.datasets import load_boston
1414
from sklearn.metrics import mean_squared_error
15-
import pylab as plt
15+
from matplotlib import pyplot as plt
1616

1717
boston = load_boston()
1818

@@ -24,9 +24,10 @@
2424
p = lr.predict(x)
2525
print("RMSE: {:.2}.".format(np.sqrt(mean_squared_error(y, p))))
2626
print("R2: {:.2}.".format(lr.score(x, y)))
27-
plt.scatter(p, y)
28-
plt.xlabel('Predicted price')
29-
plt.ylabel('Actual price')
30-
plt.plot([y.min(), y.max()], [y.min(), y.max()], lw=4)
27+
fig,ax = plt.subplots()
28+
ax.scatter(p, y)
29+
ax.set_xlabel('Predicted price')
30+
ax.set_ylabel('Actual price')
31+
ax.plot([y.min(), y.max()], [y.min(), y.max()], lw=4)
3132

32-
plt.savefig('Figure4.png', dpi=150)
33+
fig.savefig('Figure4.png')

ch07/lasso_path_plot.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -25,5 +25,5 @@
2525
ax.set_xlabel('Lasso coefficient path as a function of alpha')
2626
ax.set_xlabel('Alpha')
2727
ax.set_ylabel('Coefficient weight')
28-
fig.savefig('Figure_LassoPath.png', dpi=150)
28+
fig.savefig('Figure_LassoPath.png')
2929

ch07/predict10k_en.py

+2-1
Original file line numberDiff line numberDiff line change
@@ -69,4 +69,5 @@
6969
ax.plot([-5,-1], [-5,-1], 'r-', lw=2)
7070
ax.set_xlabel('Actual value')
7171
ax.set_ylabel('Predicted value')
72-
fig.savefig('Figure_10k_scatter_EN_l1_ratio.png', dpi=150)
72+
fig.savefig('Figure_10k_scatter_EN_l1_ratio.png')
73+

0 commit comments

Comments
 (0)