forked from minitorch/Module-0
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoperators.py
222 lines (144 loc) · 5.21 KB
/
operators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
"""
Collection of the core mathematical operators used throughout the code base.
"""
import math
# ## Task 0.1
# Implementation of a prelude of elementary functions.
def mul(x, y):
":math:`f(x, y) = x * y`"
# TODO: Implement for Task 0.1.
raise NotImplementedError('Need to implement for Task 0.1')
def id(x):
":math:`f(x) = x`"
# TODO: Implement for Task 0.1.
raise NotImplementedError('Need to implement for Task 0.1')
def add(x, y):
":math:`f(x, y) = x + y`"
# TODO: Implement for Task 0.1.
raise NotImplementedError('Need to implement for Task 0.1')
def neg(x):
":math:`f(x) = -x`"
# TODO: Implement for Task 0.1.
raise NotImplementedError('Need to implement for Task 0.1')
def lt(x, y):
":math:`f(x) =` 1.0 if x is less than y else 0.0"
# TODO: Implement for Task 0.1.
raise NotImplementedError('Need to implement for Task 0.1')
def eq(x, y):
":math:`f(x) =` 1.0 if x is equal to y else 0.0"
# TODO: Implement for Task 0.1.
raise NotImplementedError('Need to implement for Task 0.1')
def max(x, y):
":math:`f(x) =` x if x is greater than y else y"
# TODO: Implement for Task 0.1.
raise NotImplementedError('Need to implement for Task 0.1')
def is_close(x, y):
":math:`f(x) = |x - y| < 1e-2` "
# TODO: Implement for Task 0.1.
raise NotImplementedError('Need to implement for Task 0.1')
def sigmoid(x):
r"""
:math:`f(x) = \frac{1.0}{(1.0 + e^{-x})}`
(See `<https://en.wikipedia.org/wiki/Sigmoid_function>`_ .)
Calculate as
:math:`f(x) = \frac{1.0}{(1.0 + e^{-x})}` if x >=0 else :math:`\frac{e^x}{(1.0 + e^{x})}`
for stability.
Args:
x (float): input
Returns:
float : sigmoid value
"""
# TODO: Implement for Task 0.1.
raise NotImplementedError('Need to implement for Task 0.1')
def relu(x):
"""
:math:`f(x) =` x if x is greater than 0, else 0
(See `<https://en.wikipedia.org/wiki/Rectifier_(neural_networks)>`_ .)
Args:
x (float): input
Returns:
float : relu value
"""
# TODO: Implement for Task 0.1.
raise NotImplementedError('Need to implement for Task 0.1')
EPS = 1e-6
def log(x):
":math:`f(x) = log(x)`"
return math.log(x + EPS)
def exp(x):
":math:`f(x) = e^{x}`"
return math.exp(x)
def log_back(x, d):
r"If :math:`f = log` as above, compute d :math:`d \times f'(x)`"
# TODO: Implement for Task 0.1.
raise NotImplementedError('Need to implement for Task 0.1')
def inv(x):
":math:`f(x) = 1/x`"
# TODO: Implement for Task 0.1.
raise NotImplementedError('Need to implement for Task 0.1')
def inv_back(x, d):
r"If :math:`f(x) = 1/x` compute d :math:`d \times f'(x)`"
# TODO: Implement for Task 0.1.
raise NotImplementedError('Need to implement for Task 0.1')
def relu_back(x, d):
r"If :math:`f = relu` compute d :math:`d \times f'(x)`"
# TODO: Implement for Task 0.1.
raise NotImplementedError('Need to implement for Task 0.1')
# ## Task 0.3
# Small library of elementary higher-order functions for practice.
def map(fn):
"""
Higher-order map.
.. image:: figs/Ops/maplist.png
See `<https://en.wikipedia.org/wiki/Map_(higher-order_function)>`_
Args:
fn (one-arg function): Function from one value to one value.
Returns:
function : A function that takes a list, applies `fn` to each element, and returns a
new list
"""
# TODO: Implement for Task 0.3.
raise NotImplementedError('Need to implement for Task 0.3')
def negList(ls):
"Use :func:`map` and :func:`neg` to negate each element in `ls`"
# TODO: Implement for Task 0.3.
raise NotImplementedError('Need to implement for Task 0.3')
def zipWith(fn):
"""
Higher-order zipwith (or map2).
.. image:: figs/Ops/ziplist.png
See `<https://en.wikipedia.org/wiki/Map_(higher-order_function)>`_
Args:
fn (two-arg function): combine two values
Returns:
function : takes two equally sized lists `ls1` and `ls2`, produce a new list by
applying fn(x, y) on each pair of elements.
"""
# TODO: Implement for Task 0.3.
raise NotImplementedError('Need to implement for Task 0.3')
def addLists(ls1, ls2):
"Add the elements of `ls1` and `ls2` using :func:`zipWith` and :func:`add`"
# TODO: Implement for Task 0.3.
raise NotImplementedError('Need to implement for Task 0.3')
def reduce(fn, start):
r"""
Higher-order reduce.
.. image:: figs/Ops/reducelist.png
Args:
fn (two-arg function): combine two values
start (float): start value :math:`x_0`
Returns:
function : function that takes a list `ls` of elements
:math:`x_1 \ldots x_n` and computes the reduction :math:`fn(x_3, fn(x_2,
fn(x_1, x_0)))`
"""
# TODO: Implement for Task 0.3.
raise NotImplementedError('Need to implement for Task 0.3')
def sum(ls):
"Sum up a list using :func:`reduce` and :func:`add`."
# TODO: Implement for Task 0.3.
raise NotImplementedError('Need to implement for Task 0.3')
def prod(ls):
"Product of a list using :func:`reduce` and :func:`mul`."
# TODO: Implement for Task 0.3.
raise NotImplementedError('Need to implement for Task 0.3')