forked from minitorch/Module-0
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
99 lines (71 loc) · 2.73 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import streamlit as st
from interface.streamlit_utils import get_img_tag
from interface.train import render_train_interface
import sys
from run_torch import TorchTrain
module_num = int(sys.argv[1])
st.set_page_config(page_title="interactive minitorch")
st.sidebar.markdown(
"""
<h1 style="font-size:30pt; float: left; margin-right: 20px; margin-top: 1px;">MiniTorch</h1>{}
""".format(
get_img_tag("https://minitorch.github.io/_images/match.png", width="40")
),
unsafe_allow_html=True,
)
st.sidebar.markdown(
"""
[Documentation](https://minitorch.github.io/)
"""
)
module_selection = st.sidebar.radio(
"Modle",
["Module 0", "Module 1", "Module 2", "Module 3", "Module 4"][: module_num + 1],
)
PAGES = {}
if module_selection == "Module 0":
from run_manual import ManualTrain
from module_interface import render_module_sandbox
from math_interface import render_math_sandbox
def render_run_manual_interface():
st.header("Module 0 - Manual")
render_train_interface(ManualTrain, False, False, True)
def render_m0_sandbox():
return render_math_sandbox(False)
PAGES["Math Sandbox"] = render_m0_sandbox
PAGES["Module Sandbox"] = render_module_sandbox
def render_run_torch_interface():
st.header("Demo - Torch")
render_train_interface(TorchTrain, False)
PAGES["Torch Example"] = render_run_torch_interface
PAGES["Module 0: Manual"] = render_run_manual_interface
if module_selection == "Module 1":
from run_scalar import ScalarTrain
from show_expression_interface import render_show_expression
def render_m1_sandbox():
return render_math_sandbox(True)
def render_run_scalar_interface():
st.header("Module 1 - Scalars")
render_train_interface(ScalarTrain)
PAGES["Scalar Sandbox"] = render_m1_sandbox
PAGES["Autodiff Sandbox"] = render_show_expression
PAGES["Module 1: Scalar"] = render_run_scalar_interface
if module_selection == "Module 2":
from run_tensor import TensorTrain
def render_run_tensor_interface():
st.header("Module 2 - Tensors")
render_train_interface(TensorTrain)
PAGES["Module 2: Tensor"] = render_run_tensor_interface
if module_selection == "Module 3":
from run_fast_tensor import FastTrain
def render_run_fast_interface():
st.header("Module 3 - Efficient")
render_train_interface(FastTrain, False)
PAGES["Module 3: Efficient"] = render_run_fast_interface
if module_selection == "Module 4":
from run_mnist_interface import render_run_image_interface
PAGES["Module 4: Images"] = render_run_image_interface
PAGE_OPTIONS = list(PAGES.keys())
page_selection = st.sidebar.radio("Pages", PAGE_OPTIONS)
page = PAGES[page_selection]
page()