forked from bojone/attention
-
Notifications
You must be signed in to change notification settings - Fork 0
/
attention_keras.py
466 lines (445 loc) · 18.6 KB
/
attention_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
#! -*- coding: utf-8 -*-
from keras.layers import *
import keras.backend as K
def to_mask(x, mask, mode='mul'):
"""通用mask函数
"""
if mask is None:
return x
else:
for _ in range(K.ndim(x) - K.ndim(mask)):
mask = K.expand_dims(mask, K.ndim(mask))
if mode == 'mul':
return x * mask
else:
return x - (1 - mask) * 1e10
def extract_seq_patches(x, kernel_size, rate):
"""x.shape = [None, seq_len, seq_dim]
滑动地把每个窗口的x取出来,为做局部attention作准备。
"""
seq_dim = K.int_shape(x)[-1]
seq_len = K.shape(x)[1]
k_size = kernel_size + (rate - 1) * (kernel_size - 1)
p_right = (k_size - 1) // 2
p_left = k_size - 1 - p_right
x = K.temporal_padding(x, (p_left, p_right))
xs = [x[:, i: i + seq_len] for i in range(0, k_size, rate)]
x = K.concatenate(xs, 2)
return K.reshape(x, (-1, seq_len, kernel_size, seq_dim))
class OurLayer(Layer):
"""定义新的Layer,增加reuse方法,允许在定义Layer时调用现成的层
"""
def reuse(self, layer, *args, **kwargs):
if not layer.built:
if len(args) > 0:
inputs = args[0]
else:
inputs = kwargs['inputs']
if isinstance(inputs, list):
input_shape = [K.int_shape(x) for x in inputs]
else:
input_shape = K.int_shape(inputs)
layer.build(input_shape)
outputs = layer.call(*args, **kwargs)
for w in layer.trainable_weights:
if w not in self._trainable_weights:
self._trainable_weights.append(w)
for w in layer.non_trainable_weights:
if w not in self._non_trainable_weights:
self._non_trainable_weights.append(w)
return outputs
class Attention(OurLayer):
"""多头注意力机制
"""
def __init__(self, heads, size_per_head, key_size=None,
mask_right=False, **kwargs):
super(Attention, self).__init__(**kwargs)
self.heads = heads
self.size_per_head = size_per_head
self.out_dim = heads * size_per_head
self.key_size = key_size if key_size else size_per_head
self.mask_right = mask_right
def build(self, input_shape):
super(Attention, self).build(input_shape)
self.q_dense = Dense(self.key_size * self.heads, use_bias=False)
self.k_dense = Dense(self.key_size * self.heads, use_bias=False)
self.v_dense = Dense(self.out_dim, use_bias=False)
def call(self, inputs):
q, k, v = inputs[: 3]
v_mask, q_mask = None, None
if len(inputs) > 3:
v_mask = inputs[3]
if len(inputs) > 4:
q_mask = inputs[4]
# 线性变换
qw = self.reuse(self.q_dense, q)
kw = self.reuse(self.k_dense, k)
vw = self.reuse(self.v_dense, v)
# 形状变换
qw = K.reshape(qw, (-1, K.shape(qw)[1], self.heads, self.key_size))
kw = K.reshape(kw, (-1, K.shape(kw)[1], self.heads, self.key_size))
vw = K.reshape(vw, (-1, K.shape(vw)[1], self.heads, self.size_per_head))
# 维度置换
qw = K.permute_dimensions(qw, (0, 2, 1, 3))
kw = K.permute_dimensions(kw, (0, 2, 1, 3))
vw = K.permute_dimensions(vw, (0, 2, 1, 3))
# Attention
a = K.batch_dot(qw, kw, [3, 3]) / self.key_size**0.5
a = K.permute_dimensions(a, (0, 3, 2, 1))
a = to_mask(a, v_mask, 'add')
a = K.permute_dimensions(a, (0, 3, 2, 1))
if (self.mask_right is not False) or (self.mask_right is not None):
if self.mask_right is True:
ones = K.ones_like(a[: 1, : 1])
mask = (ones - K.tf.matrix_band_part(ones, -1, 0)) * 1e10
a = a - mask
else:
# 这种情况下,mask_right是外部传入的0/1矩阵,shape=[q_len, k_len]
mask = (1 - K.constant(self.mask_right)) * 1e10
mask = K.expand_dims(K.expand_dims(mask, 0), 0)
self.mask = mask
a = a - mask
a = K.softmax(a)
self.a = a
# 完成输出
o = K.batch_dot(a, vw, [3, 2])
o = K.permute_dimensions(o, (0, 2, 1, 3))
o = K.reshape(o, (-1, K.shape(o)[1], self.out_dim))
o = to_mask(o, q_mask, 'mul')
return o
def compute_output_shape(self, input_shape):
return (input_shape[0][0], input_shape[0][1], self.out_dim)
class SelfAttention(OurLayer):
"""多头自注意力机制
"""
def __init__(self, heads, size_per_head, key_size=None,
mask_right=False, **kwargs):
super(SelfAttention, self).__init__(**kwargs)
self.heads = heads
self.size_per_head = size_per_head
self.out_dim = heads * size_per_head
self.key_size = key_size if key_size else size_per_head
self.mask_right = mask_right
def build(self, input_shape):
super(SelfAttention, self).build(input_shape)
self.attention = Attention(
self.heads,
self.size_per_head,
self.key_size,
self.mask_right
)
def call(self, inputs):
if isinstance(inputs, list):
x, x_mask = inputs
o = self.reuse(self.attention, [x, x, x, x_mask, x_mask])
else:
x = inputs
o = self.reuse(self.attention, [x, x, x])
return o
def compute_output_shape(self, input_shape):
if isinstance(input_shape, list):
return (input_shape[0][0], input_shape[0][1], self.out_dim)
else:
return (input_shape[0], input_shape[1], self.out_dim)
class AtrousSelfAttention(OurLayer):
"""空洞多头自注意力机制
说明:每个元素只跟相对距离为rate的倍数的元素有关联。
"""
def __init__(self, heads, size_per_head, rate=1,
key_size=None, mask_right=False, **kwargs):
super(AtrousSelfAttention, self).__init__(**kwargs)
self.heads = heads
self.size_per_head = size_per_head
self.out_dim = heads * size_per_head
self.key_size = key_size if key_size else size_per_head
self.rate = rate
self.mask_right = mask_right
def build(self, input_shape):
super(AtrousSelfAttention, self).build(input_shape)
self.attention = Attention(
self.heads,
self.size_per_head,
self.key_size,
self.mask_right
)
def call(self, inputs):
if isinstance(inputs, list):
x, x_mask = inputs
else:
x, x_mask = inputs, None
seq_dim = K.int_shape(x)[-1]
# 补足长度,保证可以reshape
seq_len = K.shape(x)[1]
pad_len = self.rate - seq_len % self.rate
x = K.temporal_padding(x, (0, pad_len))
if x_mask is not None:
x_mask = K.temporal_padding(x_mask, (0, pad_len))
new_seq_len = K.shape(x)[1]
# 变换shape
x = K.reshape(x, (-1, new_seq_len // self.rate, self.rate, seq_dim))
x = K.permute_dimensions(x, (0, 2, 1, 3))
x = K.reshape(x, (-1, new_seq_len // self.rate, seq_dim))
if x_mask is not None:
x_mask = K.reshape(x_mask, (-1, new_seq_len // self.rate, self.rate, 1))
x_mask = K.permute_dimensions(x_mask, (0, 2, 1, 3))
x_mask = K.reshape(x_mask, (-1, new_seq_len // self.rate, 1))
# 做attention
if x_mask is not None:
x = self.reuse(self.attention, [x, x, x, x_mask, x_mask])
else:
x = self.reuse(self.attention, [x, x, x])
# 恢复shape
x = K.reshape(x, (-1, self.rate, new_seq_len // self.rate, self.out_dim))
x = K.permute_dimensions(x, (0, 2, 1, 3))
x = K.reshape(x, (-1, new_seq_len, self.out_dim))
x = x[:, : - pad_len]
return x
def compute_output_shape(self, input_shape):
if isinstance(input_shape, list):
return (input_shape[0][0], input_shape[0][1], self.out_dim)
else:
return (input_shape[0], input_shape[1], self.out_dim)
class LocalSelfAttention(OurLayer):
"""局部多头自注意力机制
说明:每个元素只跟相对距离不超过neighbors的元素有关联,这里的rate
是真正的膨胀率(跟膨胀卷积一样),如果不了解可以忽略,默认为1就好。
"""
def __init__(self, heads, size_per_head, neighbors=1, rate=1,
key_size=None, mask_right=False, **kwargs):
super(LocalSelfAttention, self).__init__(**kwargs)
self.heads = heads
self.size_per_head = size_per_head
self.out_dim = heads * size_per_head
self.key_size = key_size if key_size else size_per_head
self.neighbors = neighbors
self.rate = rate
self.mask_right = mask_right
def build(self, input_shape):
super(LocalSelfAttention, self).build(input_shape)
if self.mask_right:
mask_right = np.ones((1, 1 + 2 * self.neighbors))
mask_right[:, - self.neighbors : ] = 0
else:
mask_right = self.mask_right
self.attention = Attention(
self.heads,
self.size_per_head,
self.key_size,
mask_right
)
def call(self, inputs):
if isinstance(inputs, list):
x, x_mask = inputs
else:
x, x_mask = inputs, None
# 提取局部特征
kernel_size = 1 + 2 * self.neighbors
xp = extract_seq_patches(x, kernel_size, self.rate)
if x_mask is not None:
xp_mask = extract_seq_patches(x_mask, kernel_size, self.rate)
# 变换shape
seq_len = K.shape(x)[1]
seq_dim = K.int_shape(x)[-1]
x = K.reshape(x, (-1, 1, seq_dim))
xp = K.reshape(xp, (-1, kernel_size, seq_dim))
if x_mask is not None:
xp_mask = K.reshape(xp_mask, (-1, kernel_size, 1))
# 做attention
if x_mask is not None:
x = self.reuse(self.attention, [x, xp, xp, xp_mask])
else:
x = self.reuse(self.attention, [x, xp, xp])
# 恢复shape
x = K.reshape(x, (-1, seq_len, self.out_dim))
x = to_mask(x, x_mask, 'mul')
return x
def compute_output_shape(self, input_shape):
if isinstance(input_shape, list):
return (input_shape[0][0], input_shape[0][1], self.out_dim)
else:
return (input_shape[0], input_shape[1], self.out_dim)
class SparseSelfAttention(OurLayer):
"""稀疏多头自注意力机制
来自文章《Generating Long Sequences with Sparse Transformers》
说明:每个元素只跟相对距离为rate的倍数的元素、以及相对距离不超过rate的元素有关联。
"""
def __init__(self, heads, size_per_head, rate=2,
key_size=None, mask_right=False, **kwargs):
super(SparseSelfAttention, self).__init__(**kwargs)
self.heads = heads
self.size_per_head = size_per_head
self.out_dim = heads * size_per_head
self.key_size = key_size if key_size else size_per_head
assert rate != 1, u'if rate=1, please use SelfAttention directly'
self.rate = rate
self.neighbors = rate - 1
self.mask_right = mask_right
def build(self, input_shape):
super(SparseSelfAttention, self).build(input_shape)
self.q_dense = Dense(self.key_size * self.heads, use_bias=False)
self.k_dense = Dense(self.key_size * self.heads, use_bias=False)
self.v_dense = Dense(self.out_dim, use_bias=False)
def call(self, inputs):
if isinstance(inputs, list):
x, x_mask = inputs
else:
x, x_mask = inputs, None
seq_dim = K.int_shape(x)[-1]
# 补足长度,保证可以reshape
seq_len = K.shape(x)[1]
pad_len = self.rate - seq_len % self.rate
x = K.temporal_padding(x, (0, pad_len))
if x_mask is not None:
x_mask = K.temporal_padding(x_mask, (0, pad_len))
new_seq_len = K.shape(x)[1]
x = K.reshape(x, (-1, new_seq_len, seq_dim)) # 经过padding后shape可能变为None,所以重新声明一下shape
# 线性变换
qw = self.reuse(self.q_dense, x)
kw = self.reuse(self.k_dense, x)
vw = self.reuse(self.v_dense, x)
# 提取局部特征
kernel_size = 1 + 2 * self.neighbors
kwp = extract_seq_patches(kw, kernel_size, self.rate) # shape=[None, seq_len, kernel_size, out_dim]
vwp = extract_seq_patches(vw, kernel_size, self.rate) # shape=[None, seq_len, kernel_size, out_dim]
if x_mask is not None:
xp_mask = extract_seq_patches(x_mask, kernel_size, self.rate)
# 形状变换
qw = K.reshape(qw, (-1, new_seq_len // self.rate, self.rate, self.heads, self.key_size))
kw = K.reshape(kw, (-1, new_seq_len // self.rate, self.rate, self.heads, self.key_size))
vw = K.reshape(vw, (-1, new_seq_len // self.rate, self.rate, self.heads, self.size_per_head))
kwp = K.reshape(kwp, (-1, new_seq_len // self.rate, self.rate, kernel_size, self.heads, self.key_size))
vwp = K.reshape(vwp, (-1, new_seq_len // self.rate, self.rate, kernel_size, self.heads, self.size_per_head))
if x_mask is not None:
x_mask = K.reshape(x_mask, (-1, new_seq_len // self.rate, self.rate, 1, 1))
xp_mask = K.reshape(xp_mask, (-1, new_seq_len // self.rate, self.rate, kernel_size, 1, 1))
# 维度置换
qw = K.permute_dimensions(qw, (0, 3, 2, 1, 4)) # shape=[None, heads, r, seq_len // r, size]
kw = K.permute_dimensions(kw, (0, 3, 2, 1, 4))
vw = K.permute_dimensions(vw, (0, 3, 2, 1, 4))
qwp = K.expand_dims(qw, 4)
kwp = K.permute_dimensions(kwp, (0, 4, 2, 1, 3, 5)) # shape=[None, heads, r, seq_len // r, kernel_size, out_dim]
vwp = K.permute_dimensions(vwp, (0, 4, 2, 1, 3, 5))
if x_mask is not None:
x_mask = K.permute_dimensions(x_mask, (0, 3, 2, 1, 4))
xp_mask = K.permute_dimensions(xp_mask, (0, 4, 2, 1, 3, 5))
# Attention1
a = K.batch_dot(qw, kw, [4, 4]) / self.key_size**0.5
a = K.permute_dimensions(a, (0, 1, 2, 4, 3))
a = to_mask(a, x_mask, 'add')
a = K.permute_dimensions(a, (0, 1, 2, 4, 3))
if self.mask_right:
ones = K.ones_like(a[: 1, : 1, : 1])
mask = (ones - K.tf.matrix_band_part(ones, -1, 0)) * 1e10
a = a - mask
# Attention2
ap = K.batch_dot(qwp, kwp, [5, 5]) / self.key_size**0.5
ap = K.permute_dimensions(ap, (0, 1, 2, 3, 5, 4))
if x_mask is not None:
ap = to_mask(ap, xp_mask, 'add')
ap = K.permute_dimensions(ap, (0, 1, 2, 3, 5, 4))
if self.mask_right:
mask = np.ones((1, kernel_size))
mask[:, - self.neighbors : ] = 0
mask = (1 - K.constant(mask)) * 1e10
for _ in range(4):
mask = K.expand_dims(mask, 0)
ap = ap - mask
ap = ap[..., 0, :]
# 合并两个Attention
A = K.concatenate([a, ap], -1)
A = K.softmax(A)
a, ap = A[..., : K.shape(a)[-1]], A[..., K.shape(a)[-1] : ]
# 完成输出1
o1 = K.batch_dot(a, vw, [4, 3])
# 完成输出2
ap = K.expand_dims(ap, -2)
o2 = K.batch_dot(ap, vwp, [5, 4])
o2 = o2[..., 0, :]
# 完成输出
o = o1 + o2
o = to_mask(o, x_mask, 'mul')
o = K.permute_dimensions(o, (0, 3, 2, 1, 4))
o = K.reshape(o, (-1, new_seq_len, self.out_dim))
o = o[:, : - pad_len]
return o
def compute_output_shape(self, input_shape):
if isinstance(input_shape, list):
return (input_shape[0][0], input_shape[0][1], self.out_dim)
else:
return (input_shape[0], input_shape[1], self.out_dim)
class TrainablePositionEmbedding(OurLayer):
"""定义位置Embedding,直接训练出来
"""
def __init__(self, maxlen, v_dim,
merge_mode='add', **kwargs):
super(TrainablePositionEmbedding, self).__init__(**kwargs)
self.maxlen = maxlen
self.v_dim = v_dim
self.merge_mode = merge_mode
def build(self, input_shape):
super(TrainablePositionEmbedding, self).build(input_shape)
self.embeddings = self.add_weight(
name='embeddings',
shape=(self.maxlen, self.v_dim),
initializer='zeros'
)
def call(self, inputs):
"""允许传入r(当前位置id)来得到相对位置向量
"""
if isinstance(inputs, list):
x, r = inputs
else:
x, r = inputs, 0
pid = K.arange(K.shape(x)[1])
pid = K.expand_dims(pid, 0)
pid = K.tile(pid, [K.shape(x)[0], 1])
pid = K.abs(pid - K.cast(r, 'int32'))
pv = K.gather(self.embeddings, pid)
if self.merge_mode == 'add':
return pv + x
else:
return K.concatenate([x, pv])
def compute_output_shape(self, input_shape):
if self.merge_mode == 'add':
return input_shape
else:
return (input_shape[0], input_shape[1], input_shape[2] + self.v_dim)
class SinCosPositionEmbedding(Layer):
"""Google提出来的Sin-Cos形式的位置Embedding
"""
def __init__(self, v_dim,
merge_mode='add', **kwargs):
super(SinCosPositionEmbedding, self).__init__(**kwargs)
self.v_dim = v_dim
self.merge_mode = merge_mode
def call(self, inputs):
"""允许传入r(当前位置id)来得到相对位置向量
"""
if isinstance(inputs, list):
x, r = inputs
else:
x, r = inputs, 0
pid = K.arange(K.shape(x)[1])
pid = K.expand_dims(pid, 0)
pid = K.tile(pid, [K.shape(x)[0], 1])
pid = K.abs(pid - K.cast(r, 'int32'))
pv = self.idx2pos(pid)
if self.merge_mode == 'add':
return pv + x
else:
return K.concatenate([x, pv])
def idx2pos(self, pid):
pid = K.cast(pid, 'float32')
pid = K.expand_dims(pid, 2)
pj = 1. / K.pow(10000., 2. / self.v_dim * K.arange(self.v_dim // 2, dtype='float32'))
pj = K.expand_dims(pj, 0)
pv = K.dot(pid, pj)
pv1, pv2 = K.sin(pv), K.cos(pv)
pv1, pv2 = K.expand_dims(pv1, 3), K.expand_dims(pv2, 3)
pv = K.concatenate([pv1, pv2], 3)
return K.reshape(pv, (K.shape(pv)[0], K.shape(pv)[1], self.v_dim))
def compute_output_shape(self, input_shape):
if self.merge_mode == 'add':
return input_shape
else:
return (input_shape[0], input_shape[1], input_shape[2] + self.v_dim)