-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdraw_julia.py
53 lines (49 loc) · 1.58 KB
/
draw_julia.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#-*- coding:utf-8 -*-
'''
绘制Julia集合
Z = Z * Z + C
同样构建像素点矩阵
不同于Mandelbrot,这里每个像素点的迭代初始点不同,常数项相同
'''
import numpy as np
from matplotlib import pyplot as plt
def draw_julia(xmin = -0.5,
xmax = 0.5,
ymin = -0.5,
ymax = 0.5,
M = 100,
level = 128,
x_reso = 800,
y_reso = 600,
pn = 0.1,
qn = 0.1):
# xmin xmax ymin ymax 决定了迭代过程Z的初始值
# M是停止条件之一
# level是最大迭代次数,即最大灰度级
# x_reso y_reso决定了图像大小
# pn qn是常数项
delta_x = (xmax - xmin) / x_reso
delta_y = (ymax - ymin) / y_reso
points = np.zeros([x_reso + 1, y_reso + 1])
for i in range(x_reso + 1):
for j in range(y_reso + 1):
n = 0
x = xmin + (i - 1) * delta_x # 迭代初始值
y = ymin + (j - 1) * delta_y
while x * x + y * y < M * M and n < level:
temp = x
x = x * x - y * y + pn # 迭代
y = 2 * temp * y + qn
n += 1
points[i, j] = n # 像素点
plt.figure()
plt.imshow(points)
plt.show()
def main():
for k in range(5):
pn = 2 * np.random.rand() - 1
qn = 2 * np.random.rand() - 1
print(pn, qn)
draw_julia(pn = pn, qn = qn)
draw_julia(pn = 0.194, qn = 0.6557)
main()