forked from JunweiLiang/Object_Detection_Tracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathefficientdet_wrapper.py
587 lines (511 loc) · 20.9 KB
/
efficientdet_wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
# coding=utf-8
"""Model wrapper for EfficientDet."""
import argparse
import tensorflow as tf
from efficientdet import efficientdet_arch
from efficientdet import anchors
from efficientdet import dataloader
from class_ids import coco_obj_class_to_id
from nn import crop_and_resize_nhwc
class EfficientDet():
def __init__(self, config):
self.config = config
# input place holders
# efficientdet needs to now the width
# note here the image type is uint8, not float32, as efficientdet
# uses tf.image.convert_image_dtype, which need uint8 to auto scale to 0..1
self.image = tf.placeholder(
# tf.uint8, [None, config.max_size, 3], name="image")
tf.uint8, [None, None, 3], name="image")
# [H, W, 3] # efficientdet pad to 1920x1920
p_image, scale = self.build_preprocess(self.image)
boxes, scores, classes, fpn_box_feat = \
self.build_model(p_image, scale)
# add a name so the frozen graph will have that name
self.final_boxes = tf.identity(boxes, name="final_boxes")
self.final_labels = tf.identity(classes, name="final_labels") # [1-90]
self.final_probs = tf.identity(scores, name="final_probs")
self.fpn_box_feat = tf.identity(fpn_box_feat, name="fpn_box_feat")
#self.level_indexes = level_indexes
#self.boxes_on_fp = boxes_on_fp
def build_preprocess(self, image):
config = self.config
img_width = config.max_size
img_height = config.short_edge_size
bgr = True # cv2 load image is bgr
p_image = image
if bgr:
# to RGB, efficientdet is trained with PIL
p_image = p_image[:, :, ::-1]
#input_processor = dataloader.DetectionInputProcessor(p_image, img_size)
input_processor = dataloader.DetectionInputProcessor(
p_image, (img_height, img_width))
# make image [0,1] and -mean/var
input_processor.normalize_image()
input_processor.set_scale_factors_to_output_size()
# here the original efficientdet pad image to (max_size, max_size)
p_image = input_processor.resize_and_crop_image()
p_image_scale = input_processor.image_scale_to_original
p_image = tf.expand_dims(p_image, 0) # [1, H, W, C]
return p_image, p_image_scale
def build_model(self, image, scale):
"""
image: [H, W, 3]
Return:
boxes, labels, probs
"""
config = self.config
# [1, H, W, 3] image
# get all the parameters for the efficient_det
eff_config = get_efficientdet_config(config)
#print(image, config.max_size, config.short_edge_size)
# 2 -> 5 level, [N, H, W, C]
features = efficientdet_arch.build_backbone(image, eff_config)
#print(features)
# 3 -> 7 level, [N, H, W, C]
fpn_feats = efficientdet_arch.build_feature_network(features, eff_config)
#(max_size==1280, d5)# [1, 160, 160, 288] -> [1, 10, 10, 288]
# d0 is 64
#print(fpn_feats)
# these are used for frozen graph
#for lvl in range(eff_config.min_level, eff_config.max_level + 1):
# fpn_feats[lvl] = tf.identity(fpn_feats[lvl], name="fpn_feats_lvl%s" % lvl)
# 3 -> 7 level, [N, H, W, 810/36], 810 = 90 * 9(num_anchors), 36 = 4 * 9
class_outputs, box_outputs = efficientdet_arch.build_class_and_box_outputs(
fpn_feats, eff_config)
cls_outputs_all_after_topk, box_outputs_all_after_topk, indices_all, \
classes_all, level_index_all_after_topk = add_metric_fn_inputs(
eff_config, class_outputs, box_outputs)
boxes, scores, classes, fpn_box_feat = get_results_tf(
eff_config, fpn_feats,
cls_outputs_all_after_topk,
box_outputs_all_after_topk,
indices_all,
classes_all,
level_index_all_after_topk,
scale)
return boxes, scores, classes, fpn_box_feat
def get_feed_dict_forward(self, imgdata):
feed_dict = {}
feed_dict[self.image] = imgdata
return feed_dict
class EfficientDet_frozen():
def __init__(self, config, modelpath, gpuid):
self.graph = tf.get_default_graph()
eff_config = get_efficientdet_config(config)
# save path is one.pb file
with tf.gfile.GFile(modelpath, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
#print [n.name for n in graph_def.node]
# need this to load different stuff for different gpu
self.var_prefix = "model_%s" % gpuid
tf.import_graph_def(
graph_def,
name=self.var_prefix,
return_elements=None
)
# input place holders
self.image = self.graph.get_tensor_by_name("%s/image:0" % self.var_prefix)
# intermedia output
self.final_boxes = self.graph.get_tensor_by_name(
"%s/final_boxes:0" % self.var_prefix)
self.final_labels = self.graph.get_tensor_by_name(
"%s/final_labels:0" % self.var_prefix)
self.final_probs = self.graph.get_tensor_by_name(
"%s/final_probs:0" % self.var_prefix)
self.fpn_box_feat = self.graph.get_tensor_by_name(
"%s/fpn_box_feat:0" % self.var_prefix)
def get_feed_dict_forward(self, imgdata):
feed_dict = {}
feed_dict[self.image] = imgdata
return feed_dict
def get_efficientdet_config(config):
# so this namespace can be access with []
class my_namespace(argparse.Namespace):
def __getitem__(self, key):
return self.__dict__[key]
eff_config = my_namespace(
result_score_thres=config.result_score_thres,
result_per_im=config.result_per_im,
batch_size=1,
name=config.efficientdet_modelname,
#image_size=640,
#input_rand_hflip=True,
#train_scale_min=0.1,
#train_scale_max=2.0,
#autoaugment_policy=None,
num_classes=90,
#skip_crowd_during_training=True
# model architecture
#min_level=3, # moved this guy to high level config
#max_level=7,
num_scales=3,
aspect_ratios=[(1.0, 1.0), (1.4, 0.7), (0.7, 1.4)],
anchor_scale=4.0,
is_training_bn=False,
# optimization
#momentum=0.9,
#learning_rate=0.08,
#lr_warmup_init=0.008,
#lr_warmup_epoch=1.0,
#first_lr_drop_epoch=200.0,
#second_lr_drop_epoch=250.0,
#clip_gradients_norm=10.0,
#num_epochs=300,
#alpha=0.25,
#gamma=1.5,
#delta=0.1,
#box_loss_weight=50.0,
#weight_decay=4e-5,
#use_bfloat16=True,
# For detection.
box_class_repeats=3,
fpn_cell_repeats=3,
fpn_num_filters=88,
separable_conv=True,
apply_bn_for_resampling=True,
conv_after_downsample=False,
conv_bn_relu_pattern=False,
use_native_resize_op=False,
pooling_type=None,
fpn_name=None,
fpn_config=None,
use_tpu=False,
data_format="channels_last",
# No stochastic depth in default.
survival_prob=None,
fpn_weight_method=None,
conv_bn_act_pattern=False,
act_type="swish",
#lr_decay_method="cosine",
#moving_average_decay=0.9998,
#ckpt_var_scope=None,
backbone_name="efficientnet-b1",
backbone_config=None,
# RetinaNet.
resnet_depth=50)
replace_params = \
efficientdet_model_param_dict[config.efficientdet_modelname]
eff_config.__dict__.update(replace_params)
eff_config.min_level = config.efficientdet_min_level
eff_config.max_level = config.efficientdet_max_level
#eff_config.image_size = config.max_size
eff_config.image_size = (int(config.short_edge_size), int(config.max_size))
# needed in biFPN
#eff_config.img_height = config.short_edge_size
# original code is 5000, the topk boxes before NMS
eff_config.max_detection_topk = config.efficientdet_max_detection_topk
eff_config.partial_class_idxs = []
if config.use_partial_classes:
# config.partial_classes: all classnames in coco_obj_to_actev_obj
# -1 to map to [0-89]
eff_config.partial_class_idxs = [
coco_id_mapping_reverse[classname] - 1
for classname in config.partial_classes]
return eff_config
def roi_align(featuremap, boxes, output_shape):
boxes = tf.stop_gradient(boxes)
# [1,FS,FS,C] -> [K,out_shape*2,out_shape*2,C]
ret = crop_and_resize_nhwc(
featuremap, boxes,
tf.zeros([tf.shape(boxes)[0]], dtype=tf.int32), output_shape * 2)
ret = tf.nn.avg_pool(
ret, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
padding="SAME", data_format="NHWC")
return ret
def multilevel_roi_align(fpn_feats, boxes, level_indexes, output_shape,
eff_config):
"""
Given [R, 4] boxes and [R] level_indexes indicating the FPN level
# boxes are x1, y1, x2, y2
"""
# gather boxes for each feature level
all_rois = []
level_ids = []
# for debuging
#boxes_on_fp = []
#1920 -> [160, 80, 40, 20, 10]/{3, 4, 5, 6, 7}
for level in range(eff_config.min_level, eff_config.max_level + 1):
this_level_boxes_idxs = tf.where(tf.equal(level_indexes, level))
# [K, 1] -> [K]
this_level_boxes_idxs = tf.reshape(this_level_boxes_idxs, [-1])
level_ids.append(this_level_boxes_idxs)
this_level_boxes = tf.gather(boxes, this_level_boxes_idxs)
boxes_on_featuremap = this_level_boxes * (1.0 / (2. ** level))
featuremap = fpn_feats[level] # [1, H, W, C]
# [K, output_shape, output_shape, C]
box_feats = roi_align(featuremap, boxes_on_featuremap, output_shape)
box_feats = tf.reduce_mean(box_feats, axis=[1, 2]) # [K, C]
all_rois.append(box_feats)
# for debugging
#boxes_on_fp.append(boxes_on_featuremap)
all_rois = tf.concat(all_rois, axis=0)
# Unshuffle to the original order, to match the original samples
level_id_perm = tf.concat(level_ids, axis=0) # A permutation of 1~N
level_id_invert_perm = tf.invert_permutation(level_id_perm)
all_rois = tf.gather(all_rois, level_id_invert_perm)
#boxes_on_fp = tf.concat(boxes_on_fp, axis=0)
#boxes_on_fp = tf.gather(boxes_on_fp, level_id_invert_perm)
return all_rois#, boxes_on_fp
def get_results_tf(eff_config, fpn_feats,
cls_outputs_all_after_topk,
box_outputs_all_after_topk,
indices_all,
classes_all,
level_index_all_after_topk,
scale):
# Create anchor_label for picking top-k predictions.
eval_anchors = anchors.Anchors(eff_config["min_level"],
eff_config["max_level"],
eff_config["num_scales"],
eff_config["aspect_ratios"],
eff_config["anchor_scale"],
eff_config["image_size"])
num_classes = eff_config["num_classes"]
if eff_config["partial_class_idxs"]:
num_classes = len(eff_config["partial_class_idxs"])
anchor_labeler = anchors.AnchorLabeler(
eval_anchors, num_classes)
assert eff_config["batch_size"] == 1
# [5000], prob
cls_outputs_per_sample = cls_outputs_all_after_topk[0]
# [5000, 4]
box_outputs_per_sample = box_outputs_all_after_topk[0]
# [5000], each is 1-H*W*num_anchors
indices_per_sample = indices_all[0]
# [5000], each is 1-90
classes_per_sample = classes_all[0]
level_index_per_sample = level_index_all_after_topk[0]
# https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/py_function
# tf.py_func cannot be saved to .pb
# [R, 7] [image_id, x, y, width, height, score, class]
# now it is [R, 8], with last is level_index
#detections = anchor_labeler.generate_detections(
# cls_outputs_per_sample, box_outputs_per_sample, indices_per_sample,
# classes_per_sample, image_id=[0], image_scale=[scale],
# level_index=level_index_per_sample, use_tf=False)
# [R, 8] [image_id, x, y, width, height, score, class, feature_level_index]
# class index is 1-90, within which 80 classes have labels
#boxes, scores, classes, level_indexes = detections
# tf version
boxes, scores, classes, level_indexes = anchor_labeler.generate_detections(
cls_outputs_per_sample, box_outputs_per_sample, indices_per_sample,
classes_per_sample, image_id=[0], image_scale=[scale],
level_index=level_index_per_sample, use_tf=True,
min_score_thresh=eff_config.result_score_thres,
max_boxes_to_draw=eff_config.result_per_im)
# get the detection results and the ROI aligned features for each box
# now they have shapes
boxes = tf.reshape(boxes, [-1, 4])
classes = tf.cast(classes, dtype="int32")
level_indexes = tf.cast(tf.reshape(level_indexes, [-1]), dtype="int32")
fpn_box_feat = multilevel_roi_align(
fpn_feats, boxes, level_indexes, 7, eff_config)
#print(fpn_box_feat) # [K, 64] for d0, [K, 288] for d5
return boxes, scores, classes, fpn_box_feat
# ------------ Modified from efficientDet
def add_metric_fn_inputs(params, cls_outputs, box_outputs):
"""Selects top-k predictions and adds the selected to metric_fn_inputs.
Args:
params: a parameter dictionary that includes `min_level`, `max_level`,
`batch_size`, and `num_classes`.
cls_outputs: an OrderDict with keys representing levels and values
representing logits in [batch_size, height, width, num_anchors].
box_outputs: an OrderDict with keys representing levels and values
representing box regression targets in
[batch_size, height, width, num_anchors * 4].
metric_fn_inputs: a dictionary that will hold the top-k selections.
"""
cls_outputs_all = []
box_outputs_all = []
level_index_all = []
num_anchors = len(params.aspect_ratios) * params.num_scales
num_classes = params["num_classes"]
# Concatenates class and box of all levels into one tensor.
for level in range(params["min_level"], params["max_level"] + 1):
#print(cls_outputs[level]) # [1, H, W, 9* 90] # 9: num_anchors
_, H, W, _ = cls_outputs[level].get_shape()
level_index_all.append(tf.constant(
level, shape=(params["batch_size"], H*W*num_anchors), dtype="uint8"))
# [1, H*W*num_anchors, classes]
this_cls_outputs = tf.reshape(
cls_outputs[level],
[params["batch_size"], -1, num_classes])
if params["partial_class_idxs"]: # a list of class idx [0 - 89]
# [classes, batch, -1]
this_cls_outputs = tf.transpose(this_cls_outputs, [2, 0, 1])
# select the needed classes
this_cls_outputs = tf.gather(
this_cls_outputs, params["partial_class_idxs"])
this_cls_outputs = tf.transpose(this_cls_outputs, [1, 2, 0])
cls_outputs_all.append(this_cls_outputs)
# a list of [1, K, 4]
box_outputs_all.append(tf.reshape(
box_outputs[level], [params["batch_size"], -1, 4]))
if params["partial_class_idxs"]:
num_classes = len(params["partial_class_idxs"])
cls_outputs_all = tf.concat(cls_outputs_all, 1)
box_outputs_all = tf.concat(box_outputs_all, 1)
level_index_all = tf.concat(level_index_all, 1)
# put all spatial location and anchor together
#print(cls_outputs_all) # (1, 306900, 90)
#print(level_index_all) # (1, 306900)
# cls_outputs_all has a shape of [batch_size, N, num_classes] and
# box_outputs_all has a shape of [batch_size, N, 4]. The batch_size here
# is per-shard batch size. Recently, top-k on TPU supports batch
# dimension (b/67110441), but the following function performs top-k on
# each sample.
cls_outputs_all_after_topk = []
box_outputs_all_after_topk = []
indices_all = []
classes_all = []
level_index_all_after_topk = []
for index in range(params["batch_size"]):
# [306900, 90]
cls_outputs_per_sample = cls_outputs_all[index]
box_outputs_per_sample = box_outputs_all[index]
level_index_per_sample = level_index_all[index]
cls_outputs_per_sample_reshape = tf.reshape(cls_outputs_per_sample,
[-1])
# top 5000 boxes for all classes
_, cls_topk_indices = tf.nn.top_k(
cls_outputs_per_sample_reshape, k=params["max_detection_topk"])
# Gets top-k class and box scores.
# [1-306900]
indices = tf.div(cls_topk_indices, num_classes)
# [0-89]
# or [0-5], partial classes
classes = tf.mod(cls_topk_indices, num_classes)
cls_indices = tf.stack([indices, classes], axis=1)
# [5000], each is probability,
# classes is the class index
cls_outputs_after_topk = tf.gather_nd(cls_outputs_per_sample,
cls_indices)
cls_outputs_all_after_topk.append(cls_outputs_after_topk)
# [5000, 4]
box_outputs_after_topk = tf.gather_nd(
box_outputs_per_sample, tf.expand_dims(indices, 1))
box_outputs_all_after_topk.append(box_outputs_after_topk)
level_index_after_topk = tf.gather(level_index_per_sample, indices)
level_index_all_after_topk.append(level_index_after_topk)
indices_all.append(indices)
classes_all.append(classes)
# Concatenates via the batch dimension.
# this is the prob score
cls_outputs_all_after_topk = tf.stack(cls_outputs_all_after_topk, axis=0)
box_outputs_all_after_topk = tf.stack(box_outputs_all_after_topk, axis=0)
level_index_all_after_topk = tf.stack(level_index_all_after_topk, axis=0)
indices_all = tf.stack(indices_all, axis=0)
classes_all = tf.stack(classes_all, axis=0)
return cls_outputs_all_after_topk, box_outputs_all_after_topk, indices_all, \
classes_all, level_index_all_after_topk
"""
# [1, 5000] # prob score
metric_fn_inputs["cls_outputs_all"] = cls_outputs_all_after_topk
# [1, 5000, 4]
metric_fn_inputs["box_outputs_all"] = box_outputs_all_after_topk
# [5000], each is [1-306900]
metric_fn_inputs["indices_all"] = indices_all
# [5000], each is [0-89]
metric_fn_inputs["classes_all"] = classes_all
# [5000], each is min-level to max-level
metric_fn_inputs["level_index_all"] = level_index_all_after_topk
"""
coco_id_mapping = {
1: "person", 2: "bicycle", 3: "car", 4: "motorcycle", 5: "airplane",
6: "bus", 7: "train", 8: "truck", 9: "boat", 10: "traffic light",
11: "fire hydrant", 13: "stop sign", 14: "parking meter", 15: "bench",
16: "bird", 17: "cat", 18: "dog", 19: "horse", 20: "sheep", 21: "cow",
22: "elephant", 23: "bear", 24: "zebra", 25: "giraffe", 27: "backpack",
28: "umbrella", 31: "handbag", 32: "tie", 33: "suitcase", 34: "frisbee",
35: "skis", 36: "snowboard", 37: "sports ball", 38: "kite",
39: "baseball bat", 40: "baseball glove", 41: "skateboard", 42: "surfboard",
43: "tennis racket", 44: "bottle", 46: "wine glass", 47: "cup", 48: "fork",
49: "knife", 50: "spoon", 51: "bowl", 52: "banana", 53: "apple",
54: "sandwich", 55: "orange", 56: "broccoli", 57: "carrot", 58: "hot dog",
59: "pizza", 60: "donut", 61: "cake", 62: "chair", 63: "couch",
64: "potted plant", 65: "bed", 67: "dining table", 70: "toilet", 72: "tv",
73: "laptop", 74: "mouse", 75: "remote", 76: "keyboard", 77: "cell phone",
78: "microwave", 79: "oven", 80: "toaster", 81: "sink", 82: "refrigerator",
84: "book", 85: "clock", 86: "vase", 87: "scissors", 88: "teddy bear",
89: "hair drier", 90: "toothbrush",
}
coco_id_mapping_reverse = {v:k for k, v in coco_id_mapping.items()}
efficientdet_model_param_dict = {
"efficientdet-d0":
dict(
name="efficientdet-d0",
backbone_name="efficientnet-b0",
image_size=512,
fpn_num_filters=64,
fpn_cell_repeats=3,
box_class_repeats=3,
),
"efficientdet-d1":
dict(
name="efficientdet-d1",
backbone_name="efficientnet-b1",
image_size=640,
fpn_num_filters=88,
fpn_cell_repeats=4,
box_class_repeats=3,
),
"efficientdet-d2":
dict(
name="efficientdet-d2",
backbone_name="efficientnet-b2",
image_size=768,
fpn_num_filters=112,
fpn_cell_repeats=5,
box_class_repeats=3,
),
"efficientdet-d3":
dict(
name="efficientdet-d3",
backbone_name="efficientnet-b3",
image_size=896,
fpn_num_filters=160,
fpn_cell_repeats=6,
box_class_repeats=4,
),
"efficientdet-d4":
dict(
name="efficientdet-d4",
backbone_name="efficientnet-b4",
image_size=1024,
fpn_num_filters=224,
fpn_cell_repeats=7,
box_class_repeats=4,
),
"efficientdet-d5":
dict(
name="efficientdet-d5",
backbone_name="efficientnet-b5",
image_size=1280,
fpn_num_filters=288,
fpn_cell_repeats=7,
box_class_repeats=4,
),
"efficientdet-d6":
dict(
name="efficientdet-d6",
backbone_name="efficientnet-b6",
image_size=1280,
fpn_num_filters=384,
fpn_cell_repeats=8,
box_class_repeats=5,
fpn_name="bifpn_sum", # Use unweighted sum for training stability.
),
'efficientdet-d7':
dict(
name='efficientdet-d7',
backbone_name='efficientnet-b6',
image_size=1536,
fpn_num_filters=384,
fpn_cell_repeats=8,
box_class_repeats=5,
anchor_scale=5.0,
fpn_name='bifpn_sum', # Use unweighted sum for training stability.
),
}