forked from ufz/ogs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMeshLayerMapper.cpp
321 lines (279 loc) · 10.7 KB
/
MeshLayerMapper.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
/**
* \file
* \author Karsten Rink
* \date 2010-11-01
* \brief Implementation of the MeshLayerMapper class.
*
* \copyright
* Copyright (c) 2012-2019, OpenGeoSys Community (http://www.opengeosys.org)
* Distributed under a Modified BSD License.
* See accompanying file LICENSE.txt or
* http://www.opengeosys.org/project/license
*
*/
#include "MeshLayerMapper.h"
#include <algorithm>
#include <logog/include/logog.hpp>
#include "GeoLib/Raster.h"
#include "MathLib/MathTools.h"
#include "MeshLib/Elements/Tet.h"
#include "MeshLib/Elements/Hex.h"
#include "MeshLib/Elements/Pyramid.h"
#include "MeshLib/Elements/Prism.h"
#include "MeshLib/MeshSurfaceExtraction.h"
#include "MeshLib/Properties.h"
namespace MeshLib
{
MeshLib::Mesh* MeshLayerMapper::createStaticLayers(MeshLib::Mesh const& mesh, std::vector<float> const& layer_thickness_vector, std::string const& mesh_name)
{
std::vector<float> thickness;
for (std::size_t i = 0; i < layer_thickness_vector.size(); ++i)
{
if (layer_thickness_vector[i] > std::numeric_limits<float>::epsilon())
{
thickness.push_back(layer_thickness_vector[i]);
}
else
WARN("Ignoring layer %d with thickness %f.", i,
layer_thickness_vector[i]);
}
const std::size_t nLayers(thickness.size());
if (nLayers < 1 || mesh.getDimension() != 2)
{
ERR("MeshLayerMapper::createStaticLayers(): A 2D mesh with nLayers > 0 is required as input.");
return nullptr;
}
const std::size_t nNodes = mesh.getNumberOfNodes();
// count number of 2d elements in the original mesh
const std::size_t nElems (std::count_if(mesh.getElements().begin(), mesh.getElements().end(),
[](MeshLib::Element const* elem) { return (elem->getDimension() == 2);}));
const std::size_t nOrgElems (mesh.getNumberOfElements());
const std::vector<MeshLib::Node*> &nodes = mesh.getNodes();
const std::vector<MeshLib::Element*> &elems = mesh.getElements();
std::vector<MeshLib::Node*> new_nodes(nNodes + (nLayers * nNodes));
std::vector<MeshLib::Element*> new_elems;
new_elems.reserve(nElems * nLayers);
MeshLib::Properties properties;
auto* const materials = properties.createNewPropertyVector<int>(
"MaterialIDs", MeshLib::MeshItemType::Cell);
if (!materials)
{
ERR("Could not create PropertyVector object 'MaterialIDs'.");
return nullptr;
}
materials->reserve(nElems * nLayers);
double z_offset (0.0);
for (unsigned layer_id = 0; layer_id <= nLayers; ++layer_id)
{
// add nodes for new layer
unsigned node_offset (nNodes * layer_id);
if (layer_id > 0)
{
z_offset += thickness[layer_id - 1];
}
std::transform(nodes.cbegin(), nodes.cend(), new_nodes.begin() + node_offset,
[&z_offset](MeshLib::Node* node){ return new MeshLib::Node((*node)[0], (*node)[1], (*node)[2]-z_offset); });
// starting with 2nd layer create prism or hex elements connecting the last layer with the current one
if (layer_id == 0)
{
continue;
}
node_offset -= nNodes;
const unsigned mat_id (nLayers - layer_id);
for (unsigned i = 0; i < nOrgElems; ++i)
{
const MeshLib::Element* sfc_elem( elems[i] );
if (sfc_elem->getDimension() < 2)
{ // ignore line-elements
continue;
}
const unsigned nElemNodes(sfc_elem->getNumberOfBaseNodes());
auto** e_nodes = new MeshLib::Node*[2 * nElemNodes];
for (unsigned j=0; j<nElemNodes; ++j)
{
const unsigned node_id = sfc_elem->getNode(j)->getID() + node_offset;
e_nodes[j] = new_nodes[node_id+nNodes];
e_nodes[j+nElemNodes] = new_nodes[node_id];
}
if (sfc_elem->getGeomType() == MeshLib::MeshElemType::TRIANGLE)
{
// extrude triangles to prism
new_elems.push_back(new MeshLib::Prism(e_nodes));
}
else if (sfc_elem->getGeomType() == MeshLib::MeshElemType::QUAD)
{
// extrude quads to hexes
new_elems.push_back(new MeshLib::Hex(e_nodes));
}
else
{
OGS_FATAL("MeshLayerMapper: Unknown element type to extrude.");
}
materials->push_back(mat_id);
}
}
return new MeshLib::Mesh(mesh_name, new_nodes, new_elems, properties);
}
bool MeshLayerMapper::createRasterLayers(
MeshLib::Mesh const& mesh,
std::vector<GeoLib::Raster const*> const& rasters,
double minimum_thickness,
double noDataReplacementValue)
{
const std::size_t nLayers(rasters.size());
if (nLayers < 2 || mesh.getDimension() != 2)
{
ERR("MeshLayerMapper::createRasterLayers(): A 2D mesh and at least two rasters required as input.");
return false;
}
auto top = std::make_unique<MeshLib::Mesh>(mesh);
if (!layerMapping(*top, *rasters.back(), noDataReplacementValue))
{
return false;
}
auto bottom = std::make_unique<MeshLib::Mesh>(mesh);
if (!layerMapping(*bottom, *rasters[0], 0))
{
return false;
}
this->_minimum_thickness = minimum_thickness;
std::size_t const nNodes = mesh.getNumberOfNodes();
_nodes.reserve(nLayers * nNodes);
// number of triangles in the original mesh
std::size_t const nElems (std::count_if(mesh.getElements().begin(), mesh.getElements().end(),
[](MeshLib::Element const* elem)
{ return (elem->getGeomType() == MeshLib::MeshElemType::TRIANGLE);}));
_elements.reserve(nElems * (nLayers-1));
_materials.reserve(nElems * (nLayers-1));
// add bottom layer
std::vector<MeshLib::Node*> const& nodes = bottom->getNodes();
for (MeshLib::Node* node : nodes)
{
_nodes.push_back(new MeshLib::Node(*node));
}
// add the other layers
for (std::size_t i = 0; i < nLayers - 1; ++i)
{
addLayerToMesh(*top, i, *rasters[i + 1]);
}
return true;
}
void MeshLayerMapper::addLayerToMesh(const MeshLib::Mesh &dem_mesh, unsigned layer_id, GeoLib::Raster const& raster)
{
const unsigned pyramid_base[3][4] =
{
{1, 3, 4, 2}, // Point 4 missing
{2, 4, 3, 0}, // Point 5 missing
{0, 3, 4, 1}, // Point 6 missing
};
std::size_t const nNodes = dem_mesh.getNumberOfNodes();
std::vector<MeshLib::Node*> const& nodes = dem_mesh.getNodes();
int const last_layer_node_offset = layer_id * nNodes;
// add nodes for new layer
for (std::size_t i = 0; i < nNodes; ++i)
{
_nodes.push_back(getNewLayerNode(*nodes[i],
*_nodes[last_layer_node_offset + i],
raster, _nodes.size()));
}
std::vector<MeshLib::Element*> const& elems = dem_mesh.getElements();
std::size_t const nElems (dem_mesh.getNumberOfElements());
for (std::size_t i=0; i<nElems; ++i)
{
MeshLib::Element* elem (elems[i]);
if (elem->getGeomType() != MeshLib::MeshElemType::TRIANGLE)
{
continue;
}
unsigned node_counter(3);
unsigned missing_idx(0);
std::array<MeshLib::Node*, 6> new_elem_nodes;
for (unsigned j=0; j<3; ++j)
{
new_elem_nodes[j] = _nodes[_nodes[last_layer_node_offset + elem->getNodeIndex(j)]->getID()];
new_elem_nodes[node_counter] = (_nodes[last_layer_node_offset + elem->getNodeIndex(j) + nNodes]);
if (new_elem_nodes[j]->getID() !=
new_elem_nodes[node_counter]->getID())
{
node_counter++;
}
else
{
missing_idx = j;
}
}
switch (node_counter)
{
case 6:
_elements.push_back(new MeshLib::Prism(new_elem_nodes));
_materials.push_back(layer_id);
break;
case 5:
std::array<MeshLib::Node*, 5> pyramid_nodes;
pyramid_nodes[0] = new_elem_nodes[pyramid_base[missing_idx][0]];
pyramid_nodes[1] = new_elem_nodes[pyramid_base[missing_idx][1]];
pyramid_nodes[2] = new_elem_nodes[pyramid_base[missing_idx][2]];
pyramid_nodes[3] = new_elem_nodes[pyramid_base[missing_idx][3]];
pyramid_nodes[4] = new_elem_nodes[missing_idx];
_elements.push_back(new MeshLib::Pyramid(pyramid_nodes));
_materials.push_back(layer_id);
break;
case 4:
std::array<MeshLib::Node*, 4> tet_nodes;
std::copy(new_elem_nodes.begin(), new_elem_nodes.begin() + node_counter, tet_nodes.begin());
_elements.push_back(new MeshLib::Tet(tet_nodes));
_materials.push_back(layer_id);
break;
default:
continue;
}
}
}
bool MeshLayerMapper::layerMapping(MeshLib::Mesh &new_mesh, GeoLib::Raster const& raster, double noDataReplacementValue = 0.0)
{
if (new_mesh.getDimension() != 2)
{
ERR("MshLayerMapper::layerMapping() - requires 2D mesh");
return false;
}
GeoLib::RasterHeader const& header (raster.getHeader());
const double x0(header.origin[0]);
const double y0(header.origin[1]);
const double delta(header.cell_size);
const std::pair<double, double> xDim(x0, x0 + header.n_cols * delta); // extension in x-dimension
const std::pair<double, double> yDim(y0, y0 + header.n_rows * delta); // extension in y-dimension
const std::size_t nNodes (new_mesh.getNumberOfNodes());
const std::vector<MeshLib::Node*> &nodes = new_mesh.getNodes();
for (unsigned i = 0; i < nNodes; ++i)
{
if (!raster.isPntOnRaster(*nodes[i]))
{
// use either default value or elevation from layer above
nodes[i]->updateCoordinates((*nodes[i])[0], (*nodes[i])[1], noDataReplacementValue);
continue;
}
double elevation (raster.interpolateValueAtPoint(*nodes[i]));
if (std::abs(elevation - header.no_data) <
std::numeric_limits<double>::epsilon())
{
elevation = noDataReplacementValue;
}
nodes[i]->updateCoordinates((*nodes[i])[0], (*nodes[i])[1], elevation);
}
return true;
}
bool MeshLayerMapper::mapToStaticValue(MeshLib::Mesh &mesh, double value)
{
if (mesh.getDimension() != 2)
{
ERR("MshLayerMapper::mapToStaticValue() - requires 2D mesh");
return false;
}
std::vector<MeshLib::Node*> const& nodes (mesh.getNodes());
for (MeshLib::Node* node : nodes)
{
node->updateCoordinates((*node)[0], (*node)[1], value);
}
return true;
}
} // end namespace MeshLib