forked from pulp-platform/axi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaxi_sim_mem.sv
204 lines (197 loc) · 6.91 KB
/
axi_sim_mem.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
// Copyright (c) 2020 ETH Zurich and University of Bologna
// SPDX-License-Identifier: SHL-0.51
//
// Authors:
// - Andreas Kurth <[email protected]>
`include "axi/typedef.svh"
/// Infinite (Simulation-Only) Memory with AXI Slave Port
///
/// The memory array is named `mem`, and it is *not* initialized or reset. This makes it possible to
/// load the memory of this module in simulation with an external `$readmem*` command, e.g.,
/// ```sv
/// axi_sim_mem #( ... ) i_sim_mem ( ... );
/// initial begin
/// $readmemh("file_with_memory_addrs_and_data.mem", i_sim_mem.mem);
/// end
/// ```
/// `mem` is addressed (or indexed) byte-wise with `AddrWidth`-wide addresses.
///
/// This module does not support atomic operations (ATOPs).
module axi_sim_mem #(
/// AXI Address Width
parameter int unsigned AddrWidth = 32'd0,
/// AXI Data Width
parameter int unsigned DataWidth = 32'd0,
/// AXI ID Width
parameter int unsigned IdWidth = 32'd0,
/// AXI User Width.
parameter int unsigned UserWidth = 32'd0,
/// AXI4 request struct definition
parameter type req_t = logic,
/// AXI4 response struct definition
parameter type rsp_t = logic,
/// Warn on accesses to uninitialized bytes
parameter bit WarnUninitialized = 1'b0,
/// Application delay (measured after rising clock edge)
parameter time ApplDelay = 0ps,
/// Acquisition delay (measured after rising clock edge)
parameter time AcqDelay = 0ps
) (
/// Rising-edge clock
input logic clk_i,
/// Active-low reset
input logic rst_ni,
/// AXI4 request struct
input req_t axi_req_i,
/// AXI4 response struct
output rsp_t axi_rsp_o
);
localparam int unsigned StrbWidth = DataWidth / 8;
typedef logic [AddrWidth-1:0] addr_t;
typedef logic [DataWidth-1:0] data_t;
typedef logic [IdWidth-1:0] id_t;
typedef logic [StrbWidth-1:0] strb_t;
typedef logic [UserWidth-1:0] user_t;
`AXI_TYPEDEF_AW_CHAN_T(aw_t, addr_t, id_t, user_t)
`AXI_TYPEDEF_W_CHAN_T(w_t, data_t, strb_t, user_t)
`AXI_TYPEDEF_B_CHAN_T(b_t, id_t, user_t)
`AXI_TYPEDEF_AR_CHAN_T(ar_t, addr_t, id_t, user_t)
`AXI_TYPEDEF_R_CHAN_T(r_t, data_t, id_t, user_t)
logic [7:0] mem[addr_t];
initial begin
automatic ar_t ar_queue[$];
automatic aw_t aw_queue[$];
automatic b_t b_queue[$];
automatic shortint unsigned r_cnt = 0, w_cnt = 0;
axi_rsp_o = '0;
wait (rst_ni);
fork
// AW
forever begin
@(posedge clk_i);
#(ApplDelay);
axi_rsp_o.aw_ready = 1'b1;
#(AcqDelay - ApplDelay);
if (axi_req_i.aw_valid) begin
automatic aw_t aw = axi_req_i.aw;
aw_queue.push_back(aw);
end
end
// W
forever begin
@(posedge clk_i);
#(ApplDelay);
axi_rsp_o.w_ready = 1'b0;
if (aw_queue.size() != 0) begin
axi_rsp_o.w_ready = 1'b1;
#(AcqDelay - ApplDelay);
if (axi_req_i.w_valid) begin
automatic axi_pkg::burst_t burst = aw_queue[0].burst;
automatic axi_pkg::len_t len = aw_queue[0].len;
automatic axi_pkg::size_t size = aw_queue[0].size;
automatic addr_t addr = axi_pkg::beat_addr(aw_queue[0].addr, size, len, burst,
w_cnt);
for (shortint unsigned
i_byte = axi_pkg::beat_lower_byte(addr, size, len, burst, StrbWidth, w_cnt);
i_byte <= axi_pkg::beat_upper_byte(addr, size, len, burst, StrbWidth, w_cnt);
i_byte++) begin
if (axi_req_i.w.strb[i_byte]) begin
automatic addr_t byte_addr = (addr / StrbWidth) * StrbWidth + i_byte;
mem[byte_addr] = axi_req_i.w.data[i_byte*8+:8];
end
end
if (w_cnt == aw_queue[0].len) begin
automatic b_t b_beat = '0;
assert (axi_req_i.w.last) else $error("Expected last beat of W burst!");
b_beat.id = aw_queue[0].id;
b_beat.resp = axi_pkg::RESP_OKAY;
b_queue.push_back(b_beat);
w_cnt = 0;
void'(aw_queue.pop_front());
end else begin
assert (!axi_req_i.w.last) else $error("Did not expect last beat of W burst!");
w_cnt++;
end
end
end
end
// B
forever begin
@(posedge clk_i);
#(ApplDelay);
axi_rsp_o.b_valid = 1'b0;
if (b_queue.size() != 0) begin
axi_rsp_o.b = b_queue[0];
axi_rsp_o.b_valid = 1'b1;
#(AcqDelay - ApplDelay);
if (axi_req_i.b_ready) begin
void'(b_queue.pop_front());
end
end
end
// AR
forever begin
@(posedge clk_i);
#(ApplDelay);
axi_rsp_o.ar_ready = 1'b1;
#(AcqDelay - ApplDelay);
if (axi_req_i.ar_valid) begin
automatic ar_t ar = axi_req_i.ar;
ar_queue.push_back(ar);
end
end
// R
forever begin
@(posedge clk_i);
#(ApplDelay);
axi_rsp_o.r_valid = 1'b0;
if (ar_queue.size() != 0) begin
automatic axi_pkg::burst_t burst = ar_queue[0].burst;
automatic axi_pkg::len_t len = ar_queue[0].len;
automatic axi_pkg::size_t size = ar_queue[0].size;
automatic addr_t addr = axi_pkg::beat_addr(ar_queue[0].addr, size, len, burst, r_cnt);
automatic r_t r_beat = '0;
r_beat.data = 'x;
r_beat.id = ar_queue[0].id;
r_beat.resp = axi_pkg::RESP_OKAY;
for (shortint unsigned
i_byte = axi_pkg::beat_lower_byte(addr, size, len, burst, StrbWidth, r_cnt);
i_byte <= axi_pkg::beat_upper_byte(addr, size, len, burst, StrbWidth, r_cnt);
i_byte++) begin
automatic addr_t byte_addr = (addr / StrbWidth) * StrbWidth + i_byte;
if (!mem.exists(byte_addr)) begin
if (WarnUninitialized) begin
$warning("Access to non-initialized byte at address 0x%016x by ID 0x%x.", byte_addr,
r_beat.id);
end
r_beat.data[i_byte*8+:8] = 'x;
end else begin
r_beat.data[i_byte*8+:8] = mem[byte_addr];
end
end
if (r_cnt == ar_queue[0].len) begin
r_beat.last = 1'b1;
end
axi_rsp_o.r = r_beat;
axi_rsp_o.r_valid = 1'b1;
#(AcqDelay - ApplDelay);
if (axi_req_i.r_ready) begin
if (r_beat.last) begin
r_cnt = 0;
void'(ar_queue.pop_front());
end else begin
r_cnt++;
end
end
end
end
join
end
// Parameter Assertions
initial begin
assert (AddrWidth != 0) else $fatal("AddrWidth must be non-zero!", 1);
assert (DataWidth != 0) else $fatal("DataWidth must be non-zero!", 1);
assert (IdWidth != 0) else $fatal("IdWidth must be non-zero!", 1);
assert (UserWidth != 0) else $fatal("UserWidth must be non-zero!", 1);
end
endmodule