forked from baiyang2464/chatbot-base-on-Knowledge-Graph
-
Notifications
You must be signed in to change notification settings - Fork 0
/
question_analysis.py
79 lines (70 loc) · 3.67 KB
/
question_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# coding: utf-8
import tensorflow as tf
from classifyApp import classifyApplication
from nerApp import nerAppication
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
# 使用allow_growth option,刚一开始分配少量的GPU容量,然后按需慢慢的增加
log_device_placement = True # 是否打印设备分配日志
allow_soft_placement = True # 如果你指定的设备不存在,允许TF自动分配设备
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.3)
session_conf = tf.ConfigProto(gpu_options=gpu_options,allow_soft_placement= allow_soft_placement,log_device_placement= log_device_placement)
class question_ays:
def __init__(self,device='/cpu:0'):
self.g1 = tf.Graph() #为每个类(实例)单独创建一个graph
self.g2 = tf.Graph()
self.device = device
self.id2state={0:'O',
1:'B-dis',2:'I-dis',3:'E-dis',
4:'B-sym',5:'I-sym',6:'E-sym',
7:'B-dru',8:'I-dru',9:'E-dru',
10:'S-dis',11:'S-sym',12:'S-dru'}
self.sess_ner = tf.Session(graph = self.g1,config=session_conf)
self.sess_classify = tf.Session(graph = self.g2,config=session_conf)
self.classifyApp = classifyApplication(self.sess_classify,device)
self.nerApp = nerAppication(self.sess_ner,device)
self.state2entityType={'dis':'disease','sym':'symptom','dru':'drug'}
self.label2id={"disease_symptom":0,"symptom_curway":1,"symptom_disease":2,"disease_drug":3,
"drug_disease":4,"disease_check":5,"disease_prevent":6,
"disease_lasttime":7,"disease_cureway":8}
self.id2label ={0:"disease_symptom",1:"symptom_curway",2:"symptom_disease",3:"disease_drug",
4:"drug_disease",5:"disease_check",6:"disease_prevent",
7:"disease_lasttime",8:"disease_cureway"}
def analysis(self,text):
res = {}
args={}
question_types=[]
data_line,lable_line,efficient_sequence_length =self.nerApp.questionNer(self.sess_ner,text)
for idx in range(len(data_line)):
middle_question= []
_entity = ''
for each in range(efficient_sequence_length[idx]):
middle_question.append(data_line[idx][each])
_entityType = self.id2state[int(lable_line[idx][each])]
if _entityType[0]=='B' or _entityType[0]=='I':
_entity+= data_line[idx][each]
elif _entityType[0]=='E' or _entityType[0]=='S':
_entity+= data_line[idx][each]
_entityType_short = _entityType[-3:]
middle_question.append(self.state2entityType[_entityType_short])
if _entity not in args:
args.setdefault(_entity,[self.state2entityType[_entityType_short]])
else: args[_entity].append(self.state2entityType[_entityType_short])
_entity=''
else:
_entity=''
question_text = ''.join(middle_question)
_classify_idx = self.classifyApp.questionClassify(self.sess_classify ,question_text)
_classify_label = self.id2label[_classify_idx[0]]
question_types.append(_classify_label)
res['args'] = args
res['question_types']=question_types
return res
if __name__=="__main__":
ques = question_ays()
text="我发烧流鼻涕怎么治疗"
while(text!="" and text!=" "):
text=input("请输入一句话:")
if text == "quit" or text=="" or text == " ":break
res=ques.analysis(text)
print(res)