-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_controllable_model.py
317 lines (296 loc) · 18.1 KB
/
eval_controllable_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import os
# from sklearn.metrics import log_loss, roc_auc_score
import random
import time
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
from librerank.utils import *
from librerank.reranker import *
from librerank.CMR_generator import *
from librerank.CMR_evaluator import *
from librerank.rl_reranker import *
import datetime
import matplotlib.pyplot as plt
from scipy.ndimage import gaussian_filter1d
import json
# import seaborn as sns
def eval_controllable_10(params, model, data, l2_reg, batch_size, isrank, metric_scope, _print=False):
preds = [[] for i in range(11)]
# labels = []
losses = [[] for i in range(11)]
auc_losses = [[] for i in range(11)]
div_losses = [[] for i in range(11)]
data_size = len(data[0])
batch_num = data_size // batch_size
print('eval', batch_size, batch_num)
t = time.time()
# cates = np.reshape(np.array(data[1])[:, :, 1], [-1, max_time_len]).tolist()
labels = data[4]
# print(preds[0], labels[0])
# poss = data[-2]
cate_ids = list(map(lambda a: [i[1] for i in a], data[2]))
for i in range(11):
print(i)
for batch_no in range(batch_num):
data_batch = get_aggregated_batch(data, batch_size=batch_size, batch_no=batch_no)
pred, loss = model.eval(data_batch, l2_reg, float(i) / 10)
preds[i].extend(pred)
# labels.extend(label)
losses[i].append(loss)
train_prefer = float(i)/10
# if params.model_type == 'EGR_generator':
#
# data_batch = repeat_data(data_batch, params.rep_num)
#
# act_idx_out, act_probs_one, rl_sp_outputs, rl_de_outputs, mask_arr, lp_sp_data, lp_de_data, _, enc_input, \
# cate_chosen, cate_seq = model.predict(data_batch, train_prefer, params.l2_reg)
#
# auc_rewards = evaluator.predict(rl_sp_outputs, rl_de_outputs, data_batch[6])
#
# _, div_rewards = model.build_erria_reward(cate_chosen, cate_seq)
#
# auc_loss, div_loss = model.count_loss(data_batch, rl_sp_outputs, rl_de_outputs,
# act_probs_one, act_idx_out,
# auc_rewards, div_rewards, mask_arr,
# params.c_entropy, params.lr,
# params.l2_reg,
# params.keep_prob, train_prefer=train_prefer)
# auc_losses[i].append(auc_loss)
# div_losses[i].append(div_loss)
# elif params.model_type == 'CMR_generator':
# training_attention_distribution, training_prediction_order, predictions, cate_seq, cate_chosen = \
# model.rerank(data_batch, params.keep_prob, train_prefer=float(i)/10)
# rl_sp_outputs, rl_de_outputs = model.build_ft_chosen(data_batch, training_prediction_order)
# rerank_click = np.array(model.build_label_reward(data_batch[4], training_prediction_order))
# auc_rewards = evaluator.predict(np.array(data_batch[1]), rl_sp_outputs, rl_de_outputs,
# data_batch[6])
# base_auc_rewards = evaluator.predict(np.array(data_batch[1]), np.array(data_batch[2]),
# np.array(data_batch[3]), data_batch[6])
# auc_rewards -= base_auc_rewards
#
# _, base_div_rewards = model.build_erria_reward(cate_seq, cate_seq) # rank base rerank new
# _, div_rewards = model.build_erria_reward(cate_chosen, cate_seq)
# div_rewards -= base_div_rewards
#
# auc_loss, div_loss = model.count_loss(data_batch, training_prediction_order, auc_rewards, div_rewards,
# params.lr, params.l2_reg, params.keep_prob,
# train_prefer=float(i)/10)
# auc_losses[i].append(auc_loss)
# div_losses[i].append(div_loss)
# elif params.model_type == 'Seq2Slate': # [B, N, N] [[0,0,1],[0,1,0],[1,0,0]]
# act_idx_out, act_probs_one, rl_sp_outputs, rl_de_outputs, mask_arr, lp_sp_data, lp_de_data, _, enc_input, \
# cate_chosen, cate_seq \
# = model.predict(data_batch, float(i)/10, params.l2_reg)
# mask_arr[mask_arr < 0] = 0
# div_label, _ = model.build_erria_reward(cate_chosen, cate_seq)
# auc_loss, div_loss = model.count_loss(data_batch, rl_sp_outputs, rl_de_outputs, mask_arr, params.lr,
# params.l2_reg, div_label, params.keep_prob, train_prefer=float(i)/10)
# auc_losses[i].append(auc_loss)
# div_losses[i].append(div_loss)
# print(np.mean(auc_losses, axis=-1))
# print(np.mean(div_losses, axis=-1))
loss = [sum(loss) / len(loss) for loss in losses] # [11]
res = [[] for i in range(5)] # [5, 11, 4]
auc_l = []
idx = 0
for pred in preds:
print(idx)
r = evaluate_multi(labels, pred, cate_ids, metric_scope, isrank, _print)
auc, _ = evaluate_auc(pred, labels)
for j in range(5):
res[j].append(r[j])
auc_l.append(auc)
idx += 1
print("EVAL TIME: %.4fs" % (time.time() - t))
# return loss, res_low, res_high
return loss, res, auc_l, auc_losses, div_losses
def reranker_parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--max_time_len', default=10, type=int, help='max time length')
parser.add_argument('--save_dir', type=str, default='./', help='dir that saves logs and model')
parser.add_argument('--data_dir', type=str, default='./data/ad/', help='data dir')
parser.add_argument('--model_type', default='Seq2Slate',
choices=['PRM', 'DLCM', 'SetRank', 'GSF', 'miDNN', 'Seq2Slate', 'EGR_evaluator',
'EGR_generator', 'CMR'],
type=str,
help='algorithm name, including PRM, DLCM, SetRank, GSF, miDNN, Seq2Slate, EGR_evaluator, EGR_generator')
parser.add_argument('--data_set_name', default='ad', type=str, help='name of dataset, including ad and prm')
parser.add_argument('--initial_ranker', default='lambdaMART', choices=['DNN', 'lambdaMART'], type=str,
help='name of dataset, including DNN, lambdaMART')
parser.add_argument('--epoch_num', default=30, type=int, help='epochs of each iteration.')
parser.add_argument('--batch_size', default=16, type=int, help='batch size')
parser.add_argument('--rep_num', default=5, type=int, help='samples repeat number')
parser.add_argument('--lr', default=1e-4, type=float, help='learning rate')
parser.add_argument('--l2_reg', default=1e-4, type=float, help='l2 loss scale')
parser.add_argument('--keep_prob', default=0.8, type=float, help='keep probability')
parser.add_argument('--eb_dim', default=16, type=int, help='size of embedding')
parser.add_argument('--hidden_size', default=64, type=int, help='hidden size')
parser.add_argument('--group_size', default=1, type=int, help='group size for GSF')
parser.add_argument('--acc_prefer', default=1.0, type=float, help='accuracy_prefer/(accuracy_prefer+diversity)')
parser.add_argument('--metric_scope', default=[1, 3, 5, 10], type=list, help='the scope of metrics')
parser.add_argument('--max_norm', default=0, type=float, help='max norm of gradient')
parser.add_argument('--c_entropy', default=0.001, type=float, help='entropy coefficient in loss')
# parser.add_argument('--decay_steps', default=3000, type=int, help='learning rate decay steps')
# parser.add_argument('--decay_rate', default=1.0, type=float, help='learning rate decay rate')
parser.add_argument('--timestamp', type=str, default=datetime.datetime.now().strftime("%Y%m%d%H%M"))
parser.add_argument('--evaluator_path', type=str, default='', help='evaluator ckpt dir')
#1234
# parser.add_argument('--reload_path', type=str, default='./model/save_model_ad/10/202301181615_lambdaMART_CMR_generator_16_0.0001_0.0001_64_16_0.8_controllable', help='model ckpt dir') #38081
# parser.add_argument('--reload_path', type=str, default='./model/save_model_ad/10/202304092152_lambdaMART_CMR_generator_16_0.0001_0.0001_64_16_0.8_controllable', help='model ckpt dir') #38081
# parser.add_argument('--reload_path', type=str, default='./model/save_model_ad/10/202301122214_lambdaMART_Seq2Slate_16_0.0001_0.0001_64_16_0.8_controllable/', help='model ckpt dir')
# parser.add_argument('--reload_path', type=str, default='./model/save_model_ad/10/202301162239_lambdaMART_EGR_generator_16_0.0001_0.0001_64_16_0.8_controllable', help='model ckpt dir')
#2234
# parser.add_argument('--reload_path', type=str, default='./model//save_model_ad/10/202304072246_lambdaMART_CMR_generator_16_0.0001_0.0001_64_16_0.8_controllable', help='model ckpt dir')
# parser.add_argument('--reload_path', type=str, default='./model/save_model_ad/10/202304071858_lambdaMART_Seq2Slate_16_0.0001_0.0001_64_16_0.8_controllable', help='model ckpt dir')
# parser.add_argument('--reload_path', type=str, default='./model/save_model_ad/10/202304071856_lambdaMART_EGR_generator_16_0.0001_0.0001_64_16_0.8_controllable', help='model ckpt dir')
#3234
# parser.add_argument('--reload_path', type=str, default='./model//save_model_ad/10/202304081644_lambdaMART_CMR_generator_16_0.0001_0.0001_64_16_0.8_controllable', help='model ckpt dir')
# parser.add_argument('--reload_path', type=str, default='./model/save_model_ad/10/202304072055_lambdaMART_Seq2Slate_16_0.0001_0.0001_64_16_0.8_controllable', help='model ckpt dir')
# parser.add_argument('--reload_path', type=str, default='./model/save_model_ad/10/202304072319_lambdaMART_EGR_generator_16_0.0001_0.0001_64_16_0.8_controllable', help='model ckpt dir')
# parser.add_argument('--reload_path', type=str, default='./model/save_model_ad/10/202304101710_lambdaMART_EGR_generator_16_0.0001_0.0001_64_16_0.8_controllable', help='model ckpt dir')
# parser.add_argument('--reload_path', type=str, default='./model/save_model_ad/10/202304101659_lambdaMART_EGR_generator_16_0.0001_0.0001_64_16_0.8_controllable', help='model ckpt dir')
# parser.add_argument('--reload_path', type=str, default='./model/save_model_ad/10/202304101946_lambdaMART_CMR_generator_16_0.0001_0.0001_64_16_0.8_controllable', help='model ckpt dir') #38081
parser.add_argument('--reload_path', type=str, default='./model/save_model_ad/10/202304130851_lambdaMART_CMR_generator_16_0.0001_0.0001_64_16_0.8_controllable', help='model ckpt dir') #38081
# parser.add_argument('--setting_path', type=str, default='./config/prm_setting.json', help='setting dir')
parser.add_argument('--setting_path', type=str, default='./example/config/ad/cmr_generator_setting.json',
help='setting dir')
parser.add_argument('--controllable', type=bool, default=False, help='is controllable')
FLAGS, _ = parser.parse_known_args()
return FLAGS
if __name__ == '__main__':
parse = reranker_parse_args()
if parse.setting_path:
parse = load_parse_from_json(parse, parse.setting_path)
data_set_name = parse.data_set_name
processed_dir = parse.data_dir
stat_dir = os.path.join(processed_dir, 'data.stat')
max_time_len = parse.max_time_len
initial_ranker = parse.initial_ranker
if data_set_name == 'prm' and parse.max_time_len > 30:
max_time_len = 30
print(parse)
with open(stat_dir, 'r') as f:
stat = json.load(f)
num_item, num_cate, num_ft, profile_fnum, itm_spar_fnum, itm_dens_fnum, = stat['item_num'], stat['cate_num'], \
stat['ft_num'], stat['profile_fnum'], \
stat['itm_spar_fnum'], stat[
'itm_dens_fnum']
print('num of item', num_item, 'num of list', stat['train_num'] + stat['val_num'] + stat['test_num'],
'profile num', profile_fnum, 'spar num', itm_spar_fnum, 'dens num', itm_dens_fnum)
params = parse
with open(stat_dir, 'r') as f:
stat = json.load(f)
test_dir = os.path.join(processed_dir, initial_ranker + '.data.test')
if os.path.isfile(test_dir):
test_lists = pkl.load(open(test_dir, 'rb'))
else:
test_lists = construct_list(os.path.join(processed_dir, initial_ranker + '.rankings.test'), max_time_len)
pkl.dump(test_lists, open(test_dir, 'wb'))
gpu_options = tf.GPUOptions(allow_growth=True)
if params.model_type == 'CMR_generator':
model = CMR_generator(num_ft, params.eb_dim, params.hidden_size, max_time_len, itm_spar_fnum, itm_dens_fnum,
profile_fnum, max_norm=params.max_norm, rep_num=params.rep_num, acc_prefer=params.acc_prefer,
is_controllable=params.controllable)
if params.evaluator_type == 'cmr':
evaluator = CMR_evaluator(num_ft, params.eb_dim, params.hidden_size, max_time_len, itm_spar_fnum,
itm_dens_fnum,
profile_fnum, max_norm=params.max_norm)
with evaluator.graph.as_default() as g:
sess = tf.Session(graph=g, config=tf.ConfigProto(gpu_options=gpu_options))
evaluator.set_sess(sess)
sess.run(tf.global_variables_initializer())
evaluator.load(params.evaluator_path)
elif params.model_type == 'Seq2Slate':
model = SLModel(num_ft, params.eb_dim, params.hidden_size, max_time_len, itm_spar_fnum, itm_dens_fnum,
profile_fnum, max_norm=params.max_norm, acc_prefer=params.acc_prefer,
is_controllable=params.controllable)
elif params.model_type == 'EGR_generator':
model = PPOModel(num_ft, params.eb_dim, params.hidden_size, max_time_len, itm_spar_fnum, itm_dens_fnum,
profile_fnum, max_norm=params.max_norm, rep_num=params.rep_num, acc_prefer=params.acc_prefer,
is_controllable=params.controllable)
evaluator = EGR_evaluator(num_ft, params.eb_dim, params.hidden_size, max_time_len, itm_spar_fnum,
itm_dens_fnum,
profile_fnum, max_norm=params.max_norm)
with evaluator.graph.as_default() as g:
sess = tf.Session(graph=g, config=tf.ConfigProto(gpu_options=gpu_options))
evaluator.set_sess(sess)
sess.run(tf.global_variables_initializer())
evaluator.load(params.evaluator_path)
elif params.model_type == 'PRM':
model = PRM(num_ft, params.eb_dim, params.hidden_size, max_time_len, itm_spar_fnum, itm_dens_fnum,
profile_fnum, max_norm=params.max_norm, is_controllable=params.controllable,
acc_prefer=params.acc_prefer)
elif params.model_type == 'miDNN':
model = miDNN(num_ft, params.eb_dim, params.hidden_size, max_time_len, itm_spar_fnum, itm_dens_fnum,
profile_fnum, max_norm=params.max_norm, is_controllable=params.controllable,
acc_prefer=params.acc_prefer)
with model.graph.as_default() as g:
sess = tf.Session(graph=g, config=tf.ConfigProto(gpu_options=gpu_options))
model.set_sess(sess)
sess.run(tf.global_variables_initializer())
model.load(params.reload_path)
loss, res, auc, auc_losses, div_losses = eval_controllable_10(params, model, test_lists, params.l2_reg, params.batch_size, True,
params.metric_scope, False)
map_5_l = list(map(lambda a: a[2], res[0]))
map_l = list(map(lambda a: a[3], res[0]))
ndcg_5_l = list(map(lambda a: a[2], res[1]))
ndcg_l = list(map(lambda a: a[3], res[1]))
ilad_l = list(map(lambda a: a[2], res[3]))
err_ia_5_l = list(map(lambda a: a[2], res[4]))
err_ia_l = list(map(lambda a: a[3], res[4]))
all_data_dict = {"all_data": [map_5_l, map_l, ndcg_5_l, ndcg_l, ilad_l, err_ia_5_l, err_ia_l, auc]}
print(all_data_dict["all_data"])
for i in [0, 5, 10]:
print("%.5f" % map_5_l[i], "%.5f" % map_l[i], "%.5f" % ndcg_5_l[i], "%.5f" % ndcg_l[i], "%.5f" % ilad_l[i],
"%.5f" % err_ia_5_l[i], "%.5f" % err_ia_l[i], "%.5f" % auc[i])
x = [i / 10 for i in range(len(map_l))]
# print(auc_losses)
# print(div_losses)
# sns.set(style="darkgrid")
# fig, axes = plt.subplots(2, 2, figsize=(10, 8))
#
# # 绘制第一幅图
# sns.lineplot(x=x, y=map_5_l, ax=axes[0, 0])
# axes[0, 0].set(xlabel='auc preference', ylabel='MAP@5')
#
# # 绘制第二幅图
# sns.lineplot(x=x, y=ndcg_5_l, ax=axes[0, 1])
# axes[0, 1].set(xlabel='auc preference', ylabel='NDCG@5')
#
# # 绘制第三幅图
# sns.lineplot(x=x, y=ilad_l, ax=axes[1, 0])
# axes[1, 0].set(xlabel='auc preference', ylabel='ILAD@5')
#
# # 绘制第四幅图
# sns.lineplot(x=x, y=err_ia_5_l, ax=axes[1, 1])
# axes[1, 1].set(xlabel='auc preference', ylabel='ERR_IA@5')
#
# # 调整子图间距
# plt.tight_layout()
#
# # 添加标题
# plt.suptitle("{}_{}".format('CMR_generator', 'controllable'))
#
# # 显示图形
# plt.show()
plt.subplot(2, 2, 1)
plt.plot(x, map_l, 'r-')
plt.xlabel('auc_preference')
plt.ylabel('map')
plt.subplot(2, 2, 2)
plt.plot(x, ndcg_l, 'g-')
plt.xlabel('auc_preference')
plt.ylabel('ndcg')
plt.subplot(2, 2, 3)
plt.plot(x, ilad_l, 'b-')
plt.xlabel('auc_preference')
plt.ylabel('ilad')
plt.subplot(2, 2, 4)
plt.plot(x, err_ia_l, 'y-')
plt.xlabel('auc_preference')
plt.ylabel('err_ia')
plt.suptitle("{}_{}".format('CMR_generator', 'controllable'))
plt.legend()
plt.tight_layout()
plt.show()
# with open(params.reload_path + '/controllable_data.json', 'wb') as file:
# pickle.dump(all_data_dict, file)