forked from nickliqian/cnn_captcha
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_model.py
277 lines (242 loc) · 11.5 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import time
from PIL import Image
import random
import os
from sample import sample_conf
from tensorflow.python.framework.errors_impl import NotFoundError
# 设置以下环境变量可开启CPU识别
# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
# os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
class TrainError(Exception):
pass
class TrainModel(object):
def __init__(self, img_path, char_set, model_save_dir, verify=False):
# 模型路径
self.model_save_dir = model_save_dir
# 打乱文件顺序+校验图片格式
self.img_path = img_path
self.img_list = os.listdir(img_path)
# 校验格式
if verify:
self.confirm_image_suffix()
# 打乱文件顺序
random.seed(time.time())
random.shuffle(self.img_list)
# 获得图片宽高和字符长度基本信息
label, captcha_array = self.gen_captcha_text_image(self.img_list[0])
image_height, image_width, channel = captcha_array.shape
# 初始化变量
# 图片尺寸
self.image_height = image_height
self.image_width = image_width
self.channel = channel
# 验证码长度(位数)
self.max_captcha = len(label)
# 验证码字符类别
self.char_set = char_set
self.char_set_len = len(char_set)
# 相关信息打印
print("-->图片尺寸: {} X {}".format(image_height, image_width))
print("-->验证码长度: {}".format(self.max_captcha))
print("-->验证码共{}类 {}".format(self.char_set_len, char_set))
print("-->使用测试集为 {}".format(img_path))
# tf初始化占位符
self.X = tf.placeholder(tf.float32, [None, image_height * image_width]) # 特征向量
self.Y = tf.placeholder(tf.float32, [None, self.max_captcha * self.char_set_len]) # 标签
self.keep_prob = tf.placeholder(tf.float32) # dropout值
self.w_alpha = 0.01
self.b_alpha = 0.1
# test model input and output
print(">>> Start model test")
batch_x, batch_y = self.get_batch(0, size=100)
print(">>> input batch images shape: {}".format(batch_x.shape))
print(">>> input batch labels shape: {}".format(batch_y.shape))
def gen_captcha_text_image(self, img_name):
"""
返回一个验证码的array形式和对应的字符串标签
:return:tuple (str, numpy.array)
"""
# 标签
label = img_name.split("_")[0]
# 文件
img_file = os.path.join(self.img_path, img_name)
captcha_image = Image.open(img_file)
captcha_array = np.array(captcha_image) # 向量化
return label, captcha_array
@staticmethod
def convert2gray(img):
"""
图片转为灰度图,如果是3通道图则计算,单通道图则直接返回
:param img:
:return:
"""
if len(img.shape) > 2:
r, g, b = img[:, :, 0], img[:, :, 1], img[:, :, 2]
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
return gray
else:
return img
def text2vec(self, text):
"""
转标签为oneHot编码
:param text: str
:return: numpy.array
"""
text_len = len(text)
if text_len > self.max_captcha:
raise ValueError('验证码最长{}个字符'.format(self.max_captcha))
vector = np.zeros(self.max_captcha * self.char_set_len)
for i, ch in enumerate(text):
idx = i * self.char_set_len + self.char_set.index(ch)
vector[idx] = 1
return vector
def get_batch(self, n, size=128):
batch_x = np.zeros([size, self.image_height * self.image_width]) # 初始化
batch_y = np.zeros([size, self.max_captcha * self.char_set_len]) # 初始化
max_batch = int(len(self.img_list) / size)
# print(max_batch)
if max_batch - 1 < 0:
raise TrainError("训练集图片数量需要大于每批次训练的图片数量")
if n > max_batch - 1:
n = n % max_batch
s = n * size
e = (n + 1) * size
this_batch = self.img_list[s:e]
# print("{}:{}".format(s, e))
for i, img_name in enumerate(this_batch):
label, image_array = self.gen_captcha_text_image(img_name)
image_array = self.convert2gray(image_array) # 灰度化图片
batch_x[i, :] = image_array.flatten() / 255 # flatten 转为一维
batch_y[i, :] = self.text2vec(label) # 生成 oneHot
return batch_x, batch_y
def confirm_image_suffix(self):
# 在训练前校验所有文件格式
print("开始校验所有图片后缀")
for index, img_name in enumerate(self.img_list):
print("{} image pass".format(index), end='\r')
if not img_name.endswith(sample_conf['image_suffix']):
raise TrainError('confirm images suffix:you request [.{}] file but get file [{}]'
.format(sample_conf['image_suffix'], img_name))
print("所有图片格式校验通过")
def model(self):
x = tf.reshape(self.X, shape=[-1, self.image_height, self.image_width, 1])
print(">>> input x: {}".format(x))
# 卷积层1
wc1 = tf.get_variable(name='wc1', shape=[3, 3, 1, 32], dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer())
bc1 = tf.Variable(self.b_alpha * tf.random_normal([32]))
conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, wc1, strides=[1, 1, 1, 1], padding='SAME'), bc1))
conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv1 = tf.nn.dropout(conv1, self.keep_prob)
# 卷积层2
wc2 = tf.get_variable(name='wc2', shape=[3, 3, 32, 64], dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer())
bc2 = tf.Variable(self.b_alpha * tf.random_normal([64]))
conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, wc2, strides=[1, 1, 1, 1], padding='SAME'), bc2))
conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv2 = tf.nn.dropout(conv2, self.keep_prob)
# 卷积层3
wc3 = tf.get_variable(name='wc3', shape=[3, 3, 64, 128], dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer())
bc3 = tf.Variable(self.b_alpha * tf.random_normal([128]))
conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, wc3, strides=[1, 1, 1, 1], padding='SAME'), bc3))
conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv3 = tf.nn.dropout(conv3, self.keep_prob)
print(">>> convolution 3: ", conv3.shape)
next_shape = conv3.shape[1] * conv3.shape[2] * conv3.shape[3]
# 全连接层1
wd1 = tf.get_variable(name='wd1', shape=[next_shape, 1024], dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer())
bd1 = tf.Variable(self.b_alpha * tf.random_normal([1024]))
dense = tf.reshape(conv3, [-1, wd1.get_shape().as_list()[0]])
dense = tf.nn.relu(tf.add(tf.matmul(dense, wd1), bd1))
dense = tf.nn.dropout(dense, self.keep_prob)
# 全连接层2
wout = tf.get_variable('name', shape=[1024, self.max_captcha * self.char_set_len], dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer())
bout = tf.Variable(self.b_alpha * tf.random_normal([self.max_captcha * self.char_set_len]))
y_predict = tf.add(tf.matmul(dense, wout), bout)
return y_predict
def train_cnn(self):
y_predict = self.model()
print(">>> input batch predict shape: {}".format(y_predict.shape))
print(">>> End model test")
# 计算概率 损失
cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=y_predict, labels=self.Y))
# 梯度下降
optimizer = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(cost)
# 计算准确率
predict = tf.reshape(y_predict, [-1, self.max_captcha, self.char_set_len]) # 预测结果
max_idx_p = tf.argmax(predict, 2) # 预测结果
max_idx_l = tf.argmax(tf.reshape(self.Y, [-1, self.max_captcha, self.char_set_len]), 2) # 标签
# 计算准确率
correct_pred = tf.equal(max_idx_p, max_idx_l)
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# 模型保存对象
saver = tf.train.Saver()
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
# 恢复模型
if os.path.exists(self.model_save_dir):
try:
saver.restore(sess, self.model_save_dir)
# 判断捕获model文件夹中没有模型文件的错误
except NotFoundError:
print("model文件夹为空,将创建新模型")
else:
pass
step = 1
for i in range(3000):
batch_x, batch_y = self.get_batch(i, size=128)
_, cost_ = sess.run([optimizer, cost], feed_dict={self.X: batch_x, self.Y: batch_y, self.keep_prob: 0.75})
if step % 10 == 0:
batch_x_test, batch_y_test = self.get_batch(i, size=100)
acc = sess.run(accuracy, feed_dict={self.X: batch_x_test, self.Y: batch_y_test, self.keep_prob: 1.})
print("第{}次训练 >>> 准确率为 {} >>> loss {}".format(step, acc, cost_))
# 准确率达到99%后保存并停止
if acc > 0.99:
saver.save(sess, self.model_save_dir)
break
# 每训练500轮就保存一次
if i % 500 == 0:
saver.save(sess, self.model_save_dir)
step += 1
saver.save(sess, self.model_save_dir)
def recognize_captcha(self):
label, captcha_array = self.gen_captcha_text_image(random.choice(self.img_list))
f = plt.figure()
ax = f.add_subplot(111)
ax.text(0.1, 0.9, "origin:" + label, ha='center', va='center', transform=ax.transAxes)
plt.imshow(captcha_array)
# 预测图片
image = self.convert2gray(captcha_array)
image = image.flatten() / 255
y_predict = self.model()
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, self.model_save_dir)
predict = tf.argmax(tf.reshape(y_predict, [-1, self.max_captcha, self.char_set_len]), 2)
text_list = sess.run(predict, feed_dict={self.X: [image], self.keep_prob: 1.})
predict_text = text_list[0].tolist()
print("正确: {} 预测: {}".format(label, predict_text))
# 显示图片和预测结果
p_text = ""
for p in predict_text:
p_text += str(self.char_set[p])
print(p_text)
plt.text(20, 1, 'predict:{}'.format(p_text))
plt.show()
def main():
train_image_dir = sample_conf["train_image_dir"]
char_set = sample_conf["char_set"]
model_save_dir = sample_conf["model_save_dir"]
tm = TrainModel(train_image_dir, char_set, model_save_dir, verify=False)
tm.train_cnn() # 开始训练模型
# tm.recognize_captcha() # 识别图片示例
if __name__ == '__main__':
main()