Skip to content
forked from wkentaro/labelme

Annotation Tool for Object Segmentation.

License

Notifications You must be signed in to change notification settings

lymhust/labelme

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

labelme: Image Annotation Tool with Python

Build Status Docker Build Status

Labelme is a graphical image annotation tool inspired by http://labelme.csail.mit.edu.

It is written in Python and uses Qt for its graphical interface.

Dependencies

Installation

Docker

You need install docker, then just run below:

wget https://raw.githubusercontent.com/wkentaro/labelme/master/scripts/labelme_on_docker
chmod u+x labelme_on_docker

# Maybe you need http://sourabhbajaj.com/blog/2017/02/07/gui-applications-docker-mac/ on macOS
./labelme_on_docker static/apc2016_obj3.jpg -O static/apc2016_obj3.json

Ubuntu

sudo apt-get install python-qt4 pyqt4-dev-tools
sudo pip install labelme

macOS (older than Sierra)

brew install qt qt4
pip install labelme

macOS Sierra

brew install pyqt
pip install labelme

Usage

Annotation

Run labelme --help for detail.

labelme  # Open GUI
labelme static/apc2016_obj3.jpg  # Specify file
labelme static/apc2016_obj3.jpg -O static/apc2016_obj3.json  # Close window after the save

The annotations are saved as a JSON file. The file includes the image itself.

Visualization

To view the json file quickly, you can use utility script:

labelme_draw_json static/apc2016_obj3.json

Convert to Dataset

To convert the json to set of image and label, you can run following:

labelme_json_to_dataset static/apc2016_obj3.json

Sample

Screencast

About

Annotation Tool for Object Segmentation.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 89.0%
  • PowerShell 7.5%
  • Batchfile 3.5%