-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathalgo_personalization.py
269 lines (227 loc) · 8.79 KB
/
algo_personalization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import data
import copy
import util
import torch
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from torchvision import datasets, transforms
import json
import torch.utils.data as data
from device_race import Device
from race_srp import SRP_Gaussin_torch, get_race_distance
SPLITPATH_TRAIN = {
"mnist_dirichlet_uniform":""
}
DATAPATH = {
"mnist": "../data/mnist",
}
CONFIG = {
"mnist": {"d": 784, "c": 10},
}
def fed_race_personalize(args):
print("Running Personalization")
args_str = f"Round{args.T}_Epoch{args.E}_Batch{args.batch_size}_LR{args.learn_rate}_Device{args.K}"
print(args_str)
save_path = (
"../artifact/racefl/" + args.dataset + "/personalize_global_model/" + args_str
)
if args.tensorboard:
tb_path = "../artifact/racefl/" + args.dataset + "/personalize_" + args_str
print("tensorboard path", tb_path)
writer = SummaryWriter(tb_path)
# read data file
with open(SPLITPATH_TRAIN[args.dataset], "r") as fp:
train_net_dataidx_map = json.load(fp)
test_net_dataidx_map = {}
for id in train_net_dataidx_map.keys():
test_net_dataidx_map[id] = None
if args.dataset.startswith("mnist"):
normalize = transforms.Normalize((0.1307,), (0.3081,))
transform = transforms.Compose([transforms.ToTensor(), normalize])
train_ds = datasets.MNIST(
DATAPATH["mnist"], train=True, transform=transform, download=True
)
test_ds = datasets.MNIST(
DATAPATH["mnist"], train=False, transform=transform, download=True
)
IN = CONFIG["mnist"]["d"]
OUT = CONFIG["mnist"]["c"]
test_loader = data.DataLoader(
dataset=test_ds, batch_size=args.batch_size, shuffle=False
)
print("data dimension =", IN)
print("# classes =", OUT)
print("# of test = ", len(test_ds))
print("# of train = ", len(train_ds))
# initialize devices
devices = []
for id in train_net_dataidx_map.keys():
devices.append(
Device(
id,
train_net_dataidx_map[id],
test_net_dataidx_map[id],
train_ds,
test_ds,
IN,
OUT,
args,
)
)
cold_starter = devices[: args.N]
devices = devices[args.N :]
print("# training devices =", len(devices))
print("# cold start devices =", len(cold_starter))
if args.train_global:
model_params = devices[0].get_model()
param_buffer = []
total_param = 0
for p in model_params.parameters():
if p.requires_grad:
total_param += 1
param_buffer.append(p.data.detach().clone())
param_avg = copy.deepcopy(param_buffer)
p_i = 0
for p in param_buffer:
param_buffer[p_i] = torch.zeros_like(param_buffer[p_i], requires_grad=False)
p_i += 1
best_testacc = 0
wait_round = 0
best_param = copy.deepcopy(param_buffer)
for t in range(args.T):
devices_sample = np.random.choice(devices, args.K, replace=False)
# set up device for training
for dev_i in devices_sample:
dev_i.setup_for_training()
local_norm_weights = util.get_norm_weights_devices(devices_sample)
devices_train_acc = []
devices_test_acc = []
for dev_i in devices_sample:
dev_i.set_weights(param_avg)
param_result, train_acc = dev_i.train()
devices_train_acc += [
train_acc
] # local model's accuracy on valid ation set
p_i = 0
for param in param_result:
param_buffer[p_i] += param * local_norm_weights[dev_i.get_id()]
p_i += 1
param_avg = copy.deepcopy(param_buffer)
# reinitialize parameter buffer
p_i = 0
for p in param_buffer:
param_buffer[p_i] = torch.zeros_like(
param_buffer[p_i], requires_grad=False
)
p_i += 1
# test each sampled device
for dev_i in devices_sample:
dev_i.set_weights(param_avg)
devices_test_acc += [dev_i.evaluate()]
# test global model on test set
test_accuracy = devices_sample[0].evaluate(dataloader=test_loader)
print(
f"[{t+1} / {args.T} ] Train acc: {np.mean(devices_train_acc):.4f}, Local test acc : {np.mean(devices_test_acc):.4f}, Global Test acc: {test_accuracy:.4f}"
)
if args.tensorboard:
writer.add_scalar("Acc/train", np.mean(devices_train_acc), t)
writer.add_scalar("Acc/local_test", np.mean(devices_test_acc), t)
writer.add_scalar("Acc/test", test_accuracy, t)
if test_accuracy >= best_testacc:
best_testacc = test_accuracy
best_param = param_avg
wait_round = 0
else:
wait_round += 1
if wait_round >= 30:
break
print("History Test Accuracy {:.4f}".format(best_testacc))
torch.save(best_param, save_path + ".pt")
else:
print(f"Loading Global model from {save_path}.pt")
best_param = torch.load(save_path + ".pt")
print("===Global Model ===")
global_model_device_test_acc = []
for dev_i in devices:
dev_i.setup_for_training()
dev_i.set_weights(best_param)
global_model_device_test_acc += [dev_i.evaluate()]
print(
f" Global Model test on warm device: {np.array(global_model_device_test_acc).mean():.4f}"
)
global_model_device_test_acc = []
for dev_i in cold_starter:
dev_i.setup_for_training()
dev_i.set_weights(best_param)
global_model_device_test_acc += [dev_i.evaluate()]
print(
f" Global Model test on cold device: {np.array(global_model_device_test_acc).mean():.4f}"
)
print(global_model_device_test_acc)
print("===Local Model===")
print("Finetune on Local Device")
save_path = (
"../artifact/racefl/" + args.dataset + "/personalize_local_model/" + args_str
)
if args.train_local:
device_param_dic = {}
for dev_i in devices:
dev_i.setup_for_training()
dev_i.set_weights(best_param)
dev_i_param, train_acc = dev_i.train()
device_param_dic[dev_i.get_id()] = copy.deepcopy(dev_i_param)
torch.save(device_param_dic, save_path + ".pt")
else:
print(f"Loading local model from {save_path}.pt")
device_param_dic = torch.load(save_path + ".pt")
local_model_device_test_acc = []
for dev_i in devices:
dev_i.set_weights(device_param_dic[dev_i.get_id()])
local_model_device_test_acc += [dev_i.evaluate()]
print(
f"Personalized Model Accuracy {np.array(local_model_device_test_acc).mean(): .4f} \n {local_model_device_test_acc}",
)
hashes = SRP_Gaussin_torch(args.raceK, args.raceR, IN, args.seed)
sketch_dict = {}
sketch_raw = {}
for device in devices:
device_s, device_n = device.sketch_input(args.raceK, args.raceR, IN, hashes)
sketch_dict[device.get_id()] = device_s / device_n
sketch_raw[device.get_id()] = device_s
sketch_raw[device.get_id()] = device_n
local_cold_starter_test_acc = []
model_params = devices[0].get_model()
for dev_i in cold_starter:
dev_i.setup_for_training()
# retrieve personalize model
accuracy_buffer = []
for d in devices:
neighbors = [d.get_id()]
param_buffer = []
for p in model_params.parameters():
if p.requires_grad:
param_buffer.append(p.data.detach().cpu().clone())
p_i = 0
for p in param_buffer:
param_buffer[p_i] = torch.zeros_like(
param_buffer[p_i], requires_grad=False
)
p_i += 1
for n in neighbors:
param_result = device_param_dic[n]
p_i = 0
for param in param_result:
param_buffer[p_i] += param.cpu()
p_i += 1
p_i = 0
for param in param_result:
param_buffer[p_i] /= len(neighbors)
p_i += 1
neighr_acc = dev_i.set_weights(param_buffer)
neighr_acc = dev_i.evaluate()
accuracy_buffer += [neighr_acc]
local_cold_starter_test_acc += [max(accuracy_buffer)]
print("=====Cold Starter =====")
print(
f"Nearest Neighbor Model Accuracy {np.array(local_cold_starter_test_acc).mean() : .4f} \n {local_cold_starter_test_acc}",
)