forked from tidyverse/ggplot2
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgeom_tile.Rd
96 lines (79 loc) · 2.86 KB
/
geom_tile.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
% Generated by roxygen2 (4.0.0): do not edit by hand
\name{geom_tile}
\alias{geom_tile}
\title{Tile plane with rectangles.}
\usage{
geom_tile(mapping = NULL, data = NULL, stat = "identity",
position = "identity", ...)
}
\arguments{
\item{mapping}{The aesthetic mapping, usually constructed with
\code{\link{aes}} or \code{\link{aes_string}}. Only needs to be set
at the layer level if you are overriding the plot defaults.}
\item{data}{A layer specific dataset - only needed if you want to override
the plot defaults.}
\item{stat}{The statistical transformation to use on the data for this
layer.}
\item{position}{The position adjustment to use for overlapping points
on this layer}
\item{...}{other arguments passed on to \code{\link{layer}}. This can
include aesthetics whose values you want to set, not map. See
\code{\link{layer}} for more details.}
}
\description{
Similar to \code{\link{levelplot}} and \code{\link{image}}.
}
\section{Aesthetics}{
\Sexpr[results=rd,stage=build]{ggplot2:::rd_aesthetics("geom", "tile")}
}
\examples{
\donttest{
# Generate data
pp <- function (n,r=4) {
x <- seq(-r*pi, r*pi, len=n)
df <- expand.grid(x=x, y=x)
df$r <- sqrt(df$x^2 + df$y^2)
df$z <- cos(df$r^2)*exp(-df$r/6)
df
}
p <- ggplot(pp(20), aes(x=x,y=y))
p + geom_tile() #pretty useless!
# Add aesthetic mappings
p + geom_tile(aes(fill=z))
# Change scale
p + geom_tile(aes(fill=z)) + scale_fill_gradient(low="green", high="red")
# Use qplot instead
qplot(x, y, data=pp(20), geom="tile", fill=z)
qplot(x, y, data=pp(100), geom="tile", fill=z)
# Missing values
p <- ggplot(pp(20)[sample(20*20, size=200),], aes(x=x,y=y,fill=z))
p + geom_tile()
# Input that works with image
image(t(volcano)[ncol(volcano):1,])
library(reshape2) # for melt
ggplot(melt(volcano), aes(x=Var1, y=Var2, fill=value)) + geom_tile()
# inspired by the image-density plots of Ken Knoblauch
cars <- ggplot(mtcars, aes(y=factor(cyl), x=mpg))
cars + geom_point()
cars + stat_bin(aes(fill=..count..), geom="tile", binwidth=3, position="identity")
cars + stat_bin(aes(fill=..density..), geom="tile", binwidth=3, position="identity")
cars + stat_density(aes(fill=..density..), geom="tile", position="identity")
cars + stat_density(aes(fill=..count..), geom="tile", position="identity")
# Another example with with unequal tile sizes
x.cell.boundary <- c(0, 4, 6, 8, 10, 14)
example <- data.frame(
x = rep(c(2, 5, 7, 9, 12), 2),
y = factor(rep(c(1,2), each=5)),
z = rep(1:5, each=2),
w = rep(diff(x.cell.boundary), 2)
)
qplot(x, y, fill=z, data=example, geom="tile")
qplot(x, y, fill=z, data=example, geom="tile", width=w)
qplot(x, y, fill=factor(z), data=example, geom="tile", width=w)
# You can manually set the colour of the tiles using
# scale_manual
col <- c("darkblue", "blue", "green", "orange", "red")
qplot(x, y, fill=col[z], data=example, geom="tile", width=w, group=1) +
scale_fill_identity(labels=letters[1:5], breaks=col)
}
}