forked from davidADSP/GDL_code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRNNAttention.py
136 lines (95 loc) · 4.67 KB
/
RNNAttention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import numpy as np
import glob
from music21 import corpus, converter
from keras.layers import LSTM, Input, Dropout, Dense, Activation, Embedding, Concatenate, Reshape
from keras.layers import Flatten, RepeatVector, Permute, TimeDistributed
from keras.layers import Multiply, Lambda, Softmax
import keras.backend as K
from keras.models import Model
from keras.optimizers import RMSprop
from keras.utils import np_utils
def get_music_list(data_folder):
if data_folder == 'chorales':
file_list = ['bwv' + str(x['bwv']) for x in corpus.chorales.ChoraleList().byBWV.values()]
parser = corpus
else:
file_list = glob.glob(os.path.join(data_folder, "*.mid"))
parser = converter
return file_list, parser
def create_network(n_notes, n_durations, embed_size = 100, rnn_units = 256, use_attention = False):
""" create the structure of the neural network """
notes_in = Input(shape = (None,))
durations_in = Input(shape = (None,))
x1 = Embedding(n_notes, embed_size)(notes_in)
x2 = Embedding(n_durations, embed_size)(durations_in)
x = Concatenate()([x1,x2])
x = LSTM(rnn_units, return_sequences=True)(x)
# x = Dropout(0.2)(x)
if use_attention:
x = LSTM(rnn_units, return_sequences=True)(x)
# x = Dropout(0.2)(x)
e = Dense(1, activation='tanh')(x)
e = Reshape([-1])(e)
alpha = Activation('softmax')(e)
alpha_repeated = Permute([2, 1])(RepeatVector(rnn_units)(alpha))
c = Multiply()([x, alpha_repeated])
c = Lambda(lambda xin: K.sum(xin, axis=1), output_shape=(rnn_units,))(c)
else:
c = LSTM(rnn_units)(x)
# c = Dropout(0.2)(c)
notes_out = Dense(n_notes, activation = 'softmax', name = 'pitch')(c)
durations_out = Dense(n_durations, activation = 'softmax', name = 'duration')(c)
model = Model([notes_in, durations_in], [notes_out, durations_out])
if use_attention:
att_model = Model([notes_in, durations_in], alpha)
else:
att_model = None
opti = RMSprop(lr = 0.001)
model.compile(loss=['categorical_crossentropy', 'categorical_crossentropy'], optimizer=opti)
return model, att_model
def get_distinct(elements):
# Get all pitch names
element_names = sorted(set(elements))
n_elements = len(element_names)
return (element_names, n_elements)
def create_lookups(element_names):
# create dictionary to map notes and durations to integers
element_to_int = dict((element, number) for number, element in enumerate(element_names))
int_to_element = dict((number, element) for number, element in enumerate(element_names))
return (element_to_int, int_to_element)
def prepare_sequences(notes, durations, lookups, distincts, seq_len =32):
""" Prepare the sequences used to train the Neural Network """
note_to_int, int_to_note, duration_to_int, int_to_duration = lookups
note_names, n_notes, duration_names, n_durations = distincts
notes_network_input = []
notes_network_output = []
durations_network_input = []
durations_network_output = []
# create input sequences and the corresponding outputs
for i in range(len(notes) - seq_len):
notes_sequence_in = notes[i:i + seq_len]
notes_sequence_out = notes[i + seq_len]
notes_network_input.append([note_to_int[char] for char in notes_sequence_in])
notes_network_output.append(note_to_int[notes_sequence_out])
durations_sequence_in = durations[i:i + seq_len]
durations_sequence_out = durations[i + seq_len]
durations_network_input.append([duration_to_int[char] for char in durations_sequence_in])
durations_network_output.append(duration_to_int[durations_sequence_out])
n_patterns = len(notes_network_input)
# reshape the input into a format compatible with LSTM layers
notes_network_input = np.reshape(notes_network_input, (n_patterns, seq_len))
durations_network_input = np.reshape(durations_network_input, (n_patterns, seq_len))
network_input = [notes_network_input, durations_network_input]
notes_network_output = np_utils.to_categorical(notes_network_output, num_classes=n_notes)
durations_network_output = np_utils.to_categorical(durations_network_output, num_classes=n_durations)
network_output = [notes_network_output, durations_network_output]
return (network_input, network_output)
def sample_with_temp(preds, temperature):
if temperature == 0:
return np.argmax(preds)
else:
preds = np.log(preds) / temperature
exp_preds = np.exp(preds)
preds = exp_preds / np.sum(exp_preds)
return np.random.choice(len(preds), p=preds)