Skip to content

Latest commit

 

History

History
 
 

mesont

USER-MESONT is a LAMMPS package for simulation of nanomechanics of carbon 
nanotubes (CNTs). The model is based on a coarse-grained representation 
of CNTs as "flexible cylinders" consisting of a variable number of 
segments. Internal interactions within a CNT and the van der Waals 
interaction between the tubes are described by a mesoscopic force 
field designed and parameterized based on the results of atomic-level 
molecular dynamics simulations. The description of the force field 
is provided in the papers listed below.

This folder contains a Fortran library implementing basic level functions 
describing stretching, bending, and intertube components of the CNT tubular 
potential model (TPM) mesoscopic force field.

This library was created by Alexey N. Volkov, University of Alabama, 
[email protected].

--

References:

L. V. Zhigilei, C. Wei, and D. Srivastava, Mesoscopic model for dynamic 
simulations of carbon nanotubes, Phys. Rev. B 71, 165417, 2005.

A. N. Volkov and L. V. Zhigilei, Structural stability of carbon nanotube 
films: The role of bending buckling, ACS Nano 4, 6187-6195, 2010.

A. N. Volkov, K. R. Simov, and L. V. Zhigilei, Mesoscopic model for simulation 
of CNT-based materials, Proceedings of the ASME International Mechanical 
Engineering Congress and Exposition (IMECE2008), ASME paper IMECE2008-68021, 
2008.

A. N. Volkov and L. V. Zhigilei, Mesoscopic interaction potential for carbon 
nanotubes of arbitrary length and orientation, J. Phys. Chem. C 114, 5513-5531, 
2010.

B. K. Wittmaack, A. H. Banna, A. N. Volkov, L. V. Zhigilei, Mesoscopic 
modeling of structural self-organization of carbon nanotubes into vertically 
aligned networks of nanotube bundles, Carbon 130, 69-86, 2018.

B. K. Wittmaack, A. N. Volkov, L. V. Zhigilei, Mesoscopic modeling of the 
uniaxial compression and recovery of vertically aligned carbon nanotube 
forests, Compos. Sci. Technol. 166, 66-85, 2018.

B. K. Wittmaack, A. N. Volkov, L. V. Zhigilei, Phase transformation as the 
mechanism of mechanical deformation of vertically aligned carbon nanotube 
arrays: Insights from mesoscopic modeling, Carbon 143, 587-597, 2019.

A. N. Volkov and L. V. Zhigilei, Scaling laws and mesoscopic modeling of 
thermal conductivity in carbon nanotube materials, Phys. Rev. Lett. 104, 
215902, 2010.

A. N. Volkov, T. Shiga, D. Nicholson, J. Shiomi, and L. V. Zhigilei, Effect 
of bending buckling of carbon nanotubes on thermal conductivity of carbon 
nanotube materials, J. Appl. Phys. 111, 053501, 2012.

A. N. Volkov and L. V. Zhigilei, Heat conduction in carbon nanotube materials: 
Strong effect of intrinsic thermal conductivity of carbon nanotubes, Appl. 
Phys. Lett. 101, 043113, 2012.

W. M. Jacobs, D. A. Nicholson, H. Zemer, A. N. Volkov, and L. V. Zhigilei, 
Acoustic energy dissipation and thermalization in carbon nanotubes: Atomistic 
modeling and mesoscopic description, Phys. Rev. B 86, 165414, 2012.

A. N. Volkov and A. H. Banna, Mesoscopic computational model of covalent 
cross-links and mechanisms of load transfer in cross-linked carbon nanotube 
films with continuous networks of bundles, Comp. Mater. Sci. 176, 109410, 2020.