forked from lrw04/tinyllamas-ncnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbin2pt.py
121 lines (96 loc) · 3.16 KB
/
bin2pt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import struct
import torch
import numpy as np
from pathlib import Path
from functools import reduce
path = Path("llama-2-7b.bin")
out = path.with_suffix(".pt")
f = open(path, "rb")
dim, hidden_dim, n_layers, n_heads, n_kv_heads, vocab_size, ctx_len = struct.unpack('iiiiiii', f.read(4*7))
shared = vocab_size > 0
vocab_size = abs(vocab_size)
print(dim, hidden_dim, n_layers, n_heads, n_kv_heads, vocab_size, ctx_len)
# embedding
embedding = np.frombuffer(f.read(4 * vocab_size * dim), dtype=np.float32).reshape(vocab_size, dim)
embedding = torch.tensor(embedding)
def read_tensor(f, shape):
size = reduce(lambda x, y: x * y, shape, 1)
return torch.from_numpy(np.frombuffer(f.read(4 * size), dtype=np.float32).reshape(shape))
# rms_att_weight
rms_att_weight = [None for _ in range(n_layers)]
for i in range(n_layers):
rms_att_weight[i] = read_tensor(f, (dim,))
# wq
wq = [None for _ in range(n_layers)]
for i in range(n_layers):
wq[i] = read_tensor(f, (dim, dim))
# wk
wk = [None for _ in range(n_layers)]
for i in range(n_layers):
wk[i] = read_tensor(f, (dim, dim))
# wv
wv = [None for _ in range(n_layers)]
for i in range(n_layers):
wv[i] = read_tensor(f, (dim, dim))
# wo
wo = [None for _ in range(n_layers)]
for i in range(n_layers):
wo[i] = read_tensor(f, (dim, dim))
# rms_ffn_weight
rms_ffn_weight = [None for _ in range(n_layers)]
for i in range(n_layers):
rms_ffn_weight[i] = read_tensor(f, (dim,))
# w1
w1 = [None for _ in range(n_layers)]
for i in range(n_layers):
w1[i] = read_tensor(f, (hidden_dim, dim))
print("w1")
# w2
w2 = [None for _ in range(n_layers)]
for i in range(n_layers):
w2[i] = read_tensor(f, (dim, hidden_dim))
# w3
w3 = [None for _ in range(n_layers)]
for i in range(n_layers):
w3[i] = read_tensor(f, (hidden_dim, dim))
# rms_final_weight
rms_final_weight = read_tensor(f, (dim,))
head_size = dim // n_heads
# freq_trans_real
freq_trans_real = read_tensor(f, (ctx_len, head_size // 2))
# freq_trans_imag
freq_trans_imag = read_tensor(f, (ctx_len, head_size // 2))
# unembedding
unembedding = read_tensor(f, (vocab_size, dim))
print("read")
f.close()
# write .pt
state_dict = {}
state_dict["tok_embeddings.weight"] = embedding
for i in range(n_layers):
state_dict[f"layers.{i}.attention.wq.weight"] = wq[i]
state_dict[f"layers.{i}.attention.wk.weight"] = wk[i]
state_dict[f"layers.{i}.attention.wv.weight"] = wv[i]
state_dict[f"layers.{i}.attention.wo.weight"] = wo[i]
state_dict[f"layers.{i}.feed_forward.w1.weight"] = w1[i]
state_dict[f"layers.{i}.feed_forward.w2.weight"] = w2[i]
state_dict[f"layers.{i}.feed_forward.w3.weight"] = w3[i]
state_dict[f"layers.{i}.attention_norm.weight"] = rms_att_weight[i]
state_dict[f"layers.{i}.ffn_norm.weight"] = rms_ffn_weight[i]
state_dict["norm.weight"] = rms_final_weight
state_dict["output.weight"] = unembedding
checkpoint = {
"model_args": {
"dim": dim,
"n_layers": n_layers,
"n_heads" : n_heads,
"n_kv_heads": n_kv_heads,
"vocab_size": vocab_size,
"multiple_of": 256,
"max_seq_len": ctx_len,
"dropout": 0,
},
"model": state_dict,
}
print("save")
torch.save(checkpoint, out)