forked from mobius-software-ltd/pyton3-dtls
-
Notifications
You must be signed in to change notification settings - Fork 1
Datagram Transport Layer Security for Python
License
magnev/pyton36-dtls
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
============================================ Datagram Transport Layer Security for Python ============================================ PyDTLS brings Datagram Transport Layer Security (DTLS - RFC 6347: http://tools.ietf.org/html/rfc6347) to the Python environment. In a nutshell, DTLS brings security (encryption, server authentication, user authentication, and message authentication) to UDP datagram payloads in a manner equivalent to what SSL/TLS does for TCP stream content. DTLS is now very easy to use in Python. If you're familiar with the ssl module in Python's standard library, you already know how. All it takes is passing a datagram/UDP socket to the *wrap_socket* function instead of a stream/TCP socket. Here's how one sets up the client side of a connection:: import ssl from socket import socket, AF_INET, SOCK_DGRAM from dtls import do_patch do_patch() sock = ssl.wrap_socket(socket(AF_INET, SOCK_DGRAM)) sock.connect(('foo.bar.com', 1234)) sock.send('Hi there') Design Goals ============ The primary design goal of PyDTLS is broad availability. It has therefore been built to be widely compatible with the following: * Operating systems: apart from the Python standard library, PyDTLS relies on the OpenSSL library only. OpenSSL is widely ported, and in fact the Python standard library's *ssl* module also uses it. * Python runtime environments: PyDTLS is a package consisting of pure Python modules only. It should therefore be portable to many interpreters and runtime environments. It interfaces with OpenSSL strictly through the standard library's *ctypes* foreign function library. * The Python standard library: the standard library's *ssl* module is Python's de facto interface to SSL/TLS. PyDTLS aims to be compatible with the full public interface presented by this module. The ssl module ought to behave identically with respect to all of its functions and options when used in conjunction with PyDTLS and datagram sockets as when used without PyDTLS and stream sockets. * Connection-based protocols: as outlined below, layering security on top of datagram sockets requires introducing certain connection constructs normally absent from datagram sockets. These constructs have been added in such a way as to be compatible with code that expects to interoperate with connection-oriented stream sockets. For example, code that expects to go through server-side bind/listen/accept connection establishment should be reusable with PyDTLS sockets. Distributions ============= PyDTLS requires version 1.0.0 or higher of the OpenSSL library. Earlier versions are reported not to offer stable DTLS support. Since packaged distributions of this version of OpenSSL are available for many popular operating systems, OpenSSL-1.0.0 is an installation requirement before PyDTLS functionality can be called. On Ubuntu 12.04 LTS, for example, the Python interpreter links with libcrypto.so.1.0.0 and libssl.so.1.0.0, and so use of PyDTLS requires no further installation steps. In comparison, installation of OpenSSL on Microsoft Windows operating systems is inconvenient. For this reason, source distributions of PyDTLS are available that include OpenSSL dll's for 32-bit and 64-bit Windows. For 32-bit Windows, a version built with the MinGW toolchain is also available. Its archive includes stripped as well as non-stripped dll's. The latter can be debugged with gdb on Windows. All dll's have been linked with the Visual Studio 2008 version of the Microsoft C runtime library, msvcr90.dll, the version used by CPython 2.7. Installation of Microsoft redistributable runtime packages should therefore not be required on machines with CPython 2.7. The version of OpenSSL distributed with PyDTLS 0.1.0 is 1.0.1c. The OpenSSL version used by PyDTLS can be determined from the values of *sslconnection's* DTLS_OPENSSL_VERSION_NUMBER, DTLS_OPENSSL_VERSION, and DTLS_OPENSSL_VERSION_INFO. These variables are available through the *ssl* module also if *do_patch* has been called (see below). Note that the OpenSSL version used by PyDTLS may differ from the one used by the *ssl* module. Interfaces ========== PyDTLS' top-level package, *dtls*, provides DTLS support through the **SSLConnection** class of its *sslconnection* module. **SSLConnection** is in-line documented, and dtls/test/echo_seq.py demonstrates how to take a simple echo server through a listen/accept/echo/shutdown sequence using this class. The corresponding client side can look like the snippet at the top of this document, followed by a call to the *unwrap* method for shutdown (or a call to the **SSLConnection** *shutdown* method, if an instance of this class is used for the client side also). Note that the *dtls* package does not depend on the standard library's *ssl* module, and **SSLConnection** can therefore be used in environments where *ssl* is unavailable or incompatible. It is expected that with the *ssl* module being an established, familiar interface to TLS, it will be the preferred module through which to access DTLS. To do so, one must call the *dtls* package's *do_patch* function before passing sockets of type SOCK_DGRAM to either *ssl's* *wrap_socket* function, or *ssl's* **SSLSocket** constructor. It should be noted that once *do_patch* is called, *dtls* will raise exceptions of type **ssl.SSLError** instead of its default **dtls.err.SSLError**. This allows users' error handling code paths to remain identical when interfacing with *ssl* across stream and datagram sockets. Connection Handling =================== The DTLS protocol implies a connection as an association between two network peers where the overall association state is characterized by the handshake status of each peer endpoint (see RFC 6347). The OpenSSL library records this handshake status in "SSL" type instances (a.k.a. struct ssl_st). Datagrams can be securely sent and received by referring to a unique "SSL" instance after handshaking has been completed with this instance and its network peer. A connection is implied in that traffic may be directed to or received from only that network peer with whose "SSL" instance the handshake has been completed. The fact that the underlying network protocol, UDP in most cases, is itself connectionless is immaterial. Further, in order to prevent denial-of-service attacks on UDP DTLS servers, clients must undergo a cookie exchange phase early in the handshaking protocol, and before server-side resources are committed to a particular client (see section 4.2.1 of RFC 6347). The cookie exchange proves to the server that a client can indeed receive IP traffic at the source IP address with which its handshake-initiating ClientHello datagram is marked. PyDTLS implements this connection establishment through the *connect* method on the client side, and the *accept* method on the server side. The latter returns a new **dtls.SSLConnection** or **ssl.SSLSocket** object (depending on which interface is used, see above), which is "connected" to its peer. In addition to the *read* and *write* methods (at both interface levels), **SSLSocket's** *send* and *recv* methods can be used; use of *sendto* and *recvfrom* on connected sockets is prohibited by *ssl*. *accept* returns peer address information, as expected. Note that when using the *ssl* interface to *dtls*, *listen* must be called before calling *accept*. Demultiplexing ============== At the network io layer, only datagrams from its connected peer must be passed to a **SSLConnection** or **SSLSocket** object (unless the object is unconnected on the server-side, in which case in can be in listening mode, the initial server-side socket whose role it is to listen for incoming client connection requests). The initial server-side listening socket is not useful for performing this datagram routing function. This is because it must remain unconnected and ready to receive additional connection requests from new, unknown clients. The function of passing incoming datagrams to the proper connection is performed by the *dtls.demux* package. **SSLConnection** requests a new connection from the demux when a handshake has cleared the cookie exchange phase. An efficient implementation of this request is provided by the *osnet* module of the demux package: it creates a new socket that is bound to the same network interface and port as the listening socket, but connected to the peer. UDP stacks such as the one included with Linux route incoming datagrams to such a connected socket in preference to an unconnected socket bound to the same port. Unfortunately such is not the behavior on Microsoft Windows. Windows UDP routes datagrams to whichever currently existing socket bound to the particular port the earliest (and whether or not that socket is unconnected, or connected to the datagram's peer, or a different peer). Other sockets bound to the same port will not receive traffic, if and until they become the earliest bound socket because another socket is closed. The demux package therefore provides and automatically selects the module *router* on Windows platforms. This module also creates a new socket when receiving a new connection request; but instead of binding this socket to the same port as the listening socket, it binds to a new ephemeral port. *router* then forwards datagrams originating from the peer for which a connection was requested to the corresponding socket. For efficiency's sake, no forwarding is performed on outgoing traffic. Instead, **SSLConnection** directs outgoing traffic from the original listening socket, using *sendto*. At the OpenSSL level this requires separate read and write datagram BIO's for an "SSL" instance, one in "connected" state and one in "peer set" state, respectively, and associated with two separate network sockets. From the perspective of a PyDTLS user, this selection of and difference between demux implementations should be transparent, with the possible exception of performance deviation. This transparency does however have some limits: for example, when *router* is in use, the *accept* methods can return *None*. This happens when **SSLConnection** detects that the demux has forwarded a datagram to a known connection instead of initiating a connection to a new peer through *accept*. Returning *None* in this case is important whenever non-blocking sockets or sockets with timeouts are used, since another socket might now be readable as a result of the forwarded datagram. *accept* must return so that the application can iterate on its asynchronous *select* loop. Shutdown and Unwrapping ======================= PyDTLS implements the SSL/TLS shutdown protocol as it has been adapted for DTLS. **SSLConnection's** *shutdown* and **SSLSocket's** *unwrap* invoke this protocol. As is the case with DTLS handshaking in general, applications must be prepared to use the *get_timeout* and *handle_timeout* methods in addition to re-invoking *shutdown* or *unwrap* when sockets become readable and an exception carried SSL_ERROR_WANT_READ. (See more on asynchronous IO in the Testing section.) **SSLConnection's** *shutdown* and **SSLSocket's** *unwrap* return a (possibly new) socket that can be used for unsecured communication with the peer, as set forth by the *ssl* module. The demux infrastructure remains in use for this communication until the returned socket is cleaned up. Note that when the *router* demux is in use, the object returned will be one derived from *socket.socket*. This is because the send and recv paths must still be directed to two different OS sockets. In addition, the right thing happens if secured communication is resumed over such a socket by passing it to *ssl.wrap_socket* or the **SSLConnection** constructor. If *osnet* is used, an actual *socket.socket* instance is returned. Framework Compatibility ======================= PyDTLS sockets have been tested under the following usage modes: * Using blocking sockets and sockets with timeouts in multi-threaded UDP servers * Using non-blocking sockets, and in conjunction with the asynchronous socket handler, asyncore * Using blocking sockets, and in conjunction with the network server framework SocketServer - ThreadingTCPServer (this works because of PyDTLS's emulation of connection-related calls) Multi-thread Support ==================== Using multiple threads with OpenSSL requires implementing a locking callback. PyDTLS does implement this, and therefore multi-threaded programming with PyDTLS is safe in any environment. However, being a pure Python library, these callbacks do carry some overhead. The *ssl* module implements an equivalent locking callback in its C extension module. Not requiring interpreter re-entry, this approach can be expected to perform better. PyDTLS therefore queries OpenSSL as to whether a locking callback is already in place, and does not overwrite it if there is. Loading *ssl* can therefore improve performance, even when only the *sslconnection* interface is used. Note that loading order does not matter: to obtain the performance benefit, *ssl* can be loaded before or after the dtls package. This is because *ssl* does not do an equivalent existing locking callback check, and will simply overwrite the PyDTLS callback if it has already been installed. But *ssl* should not be loaded while *dtls* operation is already in progress, when some locks may be in their acquired state. Also note that this performance enhancement is available only on platforms where PyDTLS loads the same OpenSSL shared object as *ssl*. On Ubuntu 12.04, for example, this is the case, but on Microsoft Windows it is not. Testing ======= Almost all of the Python standard library's *ssl* unit tests from the module *test_ssl.py* have been ported to *dtls.test.unit.py*. All tests have been adjusted to operate with datagram sockets. On Linux, each test is executed four times, varying the address family among IPv4 and IPv6 and the demux among *osnet* and *router*. On Windows, where *osnet* is unavailable, each test is run twice, once with IPv4 and once with IPv6. The unit test suite includes tests for each of the above-mentioned compatible frameworks. The class **AsyncoreEchoServer** serves as an example of how to use non-blocking datagram sockets and implement the resulting timeout detection requirements. DTLS in general and OpenSSL in particular require being called back when used with non-blocking sockets (or sockets with timeout option) after DTLS timeouts expire to handle packet loss using re-transmission during a handshake. Handshaking may occur during any read or write operation, even after an initial handshake completes successfully, in case renegotiation is requested by a peer. Running with the -v switch executes all unit tests in verbose mode. dtls/test/test_perf.py implements an interactive performance test suite that compares the raw throughput of TCP, UDP, SSL, and DTLS. It can be executed locally through the loopback interface, or between remote clients and servers. In the latter case, test jobs are sent to remote connected clients whenever a suite run is initiated through the interactive interface. Run test_perf.py -h for more information. It should be noted that comparing the performance of protocols that don't offer congestion control (UDP and DTLS) with those that do (TCP and SSL) is a difficult undertaking. Raw throughput even across gigabit network links can be expected to suffer without congestion control and peers that generate data as fast as possible without throttling (as this test does): the link's throughput will drop significantly as it enters congestion collapse. Similarly, loopback is an imperfect test interface since it rarely drops packets, and never duplicates or reorders them (thus negating the relative performance benefits of DTLS over SSL). Nevertheless, some useful insights can be gained by observing the operation of test_perf.py, including software stack behavior in the presence of some amount of packet loss. Logging ======= The *dtls* package and its sub-packages log various occurrences, primarily events that can aid debugging. Especially *router* emits many messages when the logging level is set to at least *logging.DEBUG*. dtls/test/echo_seq.py activates this logging level during its operation. Currently Supported Platforms ============================= At the time of initial release, PyDTLS 0.1.0 has been tested on Ubuntu 12.04.1 LTS 32-bit and 64-bit, as well as Microsoft Windows 7 32-bit and 64-bit, using CPython 2.7.3. Patches with additional platform ports are welcome.
About
Datagram Transport Layer Security for Python
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published
Languages
- Python 98.9%
- Other 1.1%