-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsha256_lisible.c
330 lines (298 loc) · 10.9 KB
/
sha256_lisible.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
/*********************************************************************
* Filename: sha256.c
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Implementation of the SHA-256 hashing algorithm.
SHA-256 is one of the three algorithms in the SHA2
specification. The others, SHA-384 and SHA-512, are not
offered in this implementation.
Algorithm specification can be found here:
* http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
This implementation uses little endian byte order.
*********************************************************************/
/*************************** HEADER FILES ***************************/
#include "sha256_lisible.h"
#include <string.h>
/****************************** MACROS ******************************/
/**************************** VARIABLES *****************************/
static const WORD k[64] = {
0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,
0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,
0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da,
0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967,
0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,
0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,
0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3,
0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
};
/*********************** FUNCTION DEFINITIONS ***********************/
void sha256_transform(SHA256_CTX *ctx, const uint32_t data[], int verbose)
{
WORD a, b, c, d, e, f, g, h, i, j, t1, t2;
WORD m1=0, m2=0;
for (i = 0, j = 0; i < 16; ++i, j += 4)
ctx->m[i] = data[i];
for ( ; i < 64; ++i){
ctx->m[i] = SIG1(ctx->m[i - 2]) + ctx->m[i - 7] + SIG0(ctx->m[i - 15]) + ctx->m[i - 16];
}
//hexdump_bytes_hn("sha256inv_init hash : ", (uint8_t*)ctx->m, 256);
a = ctx->state[0];
b = ctx->state[1];
c = ctx->state[2];
d = ctx->state[3];
e = ctx->state[4];
f = ctx->state[5];
g = ctx->state[6];
h = ctx->state[7];
for (i = 0; i < 64; ++i) {
// E61 = HashH-KH = D60 + h60 + EP1(e60) + CH(e60,f60,g60) + k[60] + ctx->m[60];
// A61 = HashD-KD = h60 + EP1(e) + CH(e,f,g) + k[60] + ctx->m[60] + EP0(a) + MAJ(a,b,c)
/*if (i==59){
// For both
// 0x6F7B4F79 was brute force calculated
//ctx->m[i] = 0x20CA0CC2 - h - EP1(e) - CH(e,f,g) -k[i] - EP0(a) - MAJ(a,b,c) ;
//ctx->m[i] = 0 ;
}
if (i==60){
// For correct H K HashH
m1 = - h - EP1(e) - CH(e,f,g) - k[i] - d - 0x5BE0CD19 + 0x393CB650 ;
// For correct D
m2 = - h - EP1(e) - CH(e,f,g) - k[i] - EP0(a) - MAJ(a,b,c) - 0xA54FF53A + 0xE1550CAD;
//For Both
// d60 - 0x5BE0CD19 + 0x393CB650 = EP0(a) - MAJ(a,b,c) - 0xA54FF53A + 0xE1550CAD;
// 0xF9EB9D5B - 0x5BE0CD19 + 0x393CB650 + 0xA54FF53A - 0xE1550CAD = EP0(a) - MAJ(a,b,c)
// −0x15894CB97 = (ROTRIGHT(a,2) ^ ROTRIGHT(a,13) ^ ROTRIGHT(a,22)) - ((a & b60) ^ (a & c60) ^ (b60 & c60))
// −0x15894CB97 = (ROTRIGHT(a,2) ^ ROTRIGHT(a,13) ^ ROTRIGHT(a,22)) - ((a & b60) ^ (a & c60) ^ 0x2A061244)
// a60 = 061D4FBB or 20CA0CC2 or 8777EEFB
// HashH = 393CB650
// recompute mh
//ctx->m[i] =m2;
}
if (i==61){
// For correct G
m1 = 0xA3A1413D - 0x1F83D9AB - d - h - EP1(e) - CH(e,f,g) - k[i];
// For correct C
m2 = 0xEBEAB5B4 - 0x3C6EF372 - h - EP1(e) - CH(e,f,g) - k[i] - EP0(a) - MAJ(a,b,c) ;
//ctx->m[i] =m2;
}
if (i==62){
// For correct F
m1 = - h - EP1(e) - CH(e,f,g) - k[i] + 0x48FBC4EF - 0x9B05688C - d;
// For correct B
m2 = - h - EP1(e) - CH(e,f,g) - k[i] + 0xCF23E14E - 0xBB67AE85 - EP0(a) - MAJ(a,b,c) ;
// Both
// a =
ctx->m[i] = - h - EP1(e) - CH(e,f,g) -k[i] + 0x2B3F8B26 - EP0(a) - MAJ(a,b,c) ;
//ctx->m[i] =m2;
}
if (i==63){
// For correct E HashE kE:
m1 = -h - EP1(e) - CH(e,f,g) - k[i] + 0x5B509E33 - 0x510E527F - d;
// For correct A HashA kA
m2 = -h - EP1(e) - CH(e,f,g) - k[i] + 0xF7846F55 - 0x6A09E667 - EP0(a) - MAJ(a,b,c);
// Both
// a = HashB-kB, b=HashC-kC, c=HashD-kD => Resoudre pour d
// D63 = HashE - kE - HashA + kA + EP0(HashB-kB) + MAJ(HashB-kB,HashC-kC,HashD-kd)
// D63 = 0x5B509E33 - 0x510E527F - 0xF7846F55 + 0x6A09E667 + EP0(a) + MAJ(a,b,c)
//ctx->m[i] =m2; answer ctx->m=AD706F97
}
*/
t1 = h + EP1(e) + CH(e,f,g) + k[i] + ctx->m[i];
t2 = EP0(a) + MAJ(a,b,c);
if (verbose) printf("Round%d : a=%.8X b=%.8X c=%.8X d=%.8X e=%.8X f=%.8X g=%.8X h=%.8X m=%.8X m1=%.8X m2=%.8X t1=%.8X t2=%.8X\n", i, a, b, c, d, e, f, g, h, ctx->m[i], m1, m2, t1, t2);
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t1 + t2;
}
if (verbose) printf("Round%d : a=%.8X b=%.8X c=%.8X d=%.8X e=%.8X f=%.8X g=%.8X h=%.8X\n", 64, a, b, c, d, e, f, g, h);
if (verbose) printf("Add k :ka=%.8Xkb=%.8Xkc=%.8Xkd=%.8Xke=%.8Xkf=%.8Xkg=%.8Xkh=%.8X\n", ctx->state[0], ctx->state[1], ctx->state[2], ctx->state[3], ctx->state[4], ctx->state[5], ctx->state[6], ctx->state[7]);
ctx->state[0] += a;
ctx->state[1] += b;
ctx->state[2] += c;
ctx->state[3] += d;
ctx->state[4] += e;
ctx->state[5] += f;
ctx->state[6] += g;
ctx->state[7] += h;
/*
for (idx=0 ; idx<8 ; idx++){
printf("result%d = %08X\n", idx, ctx->state[idx]);
}
*/
//hexdump("Trs: ", ctx->state, 32);
if (verbose) printf("Result : a=%.8X b=%.8X c=%.8X d=%.8X e=%.8X f=%.8X g=%.8X h=%.8X\n", ctx->state[0], ctx->state[1], ctx->state[2], ctx->state[3], ctx->state[4], ctx->state[5], ctx->state[6], ctx->state[7]);
}
void sha256_init(SHA256_CTX *ctx)
{
ctx->datalen = 0;
ctx->bitlen = 0;
ctx->state[0] = 0x6a09e667;
ctx->state[1] = 0xbb67ae85;
ctx->state[2] = 0x3c6ef372;
ctx->state[3] = 0xa54ff53a;
ctx->state[4] = 0x510e527f;
ctx->state[5] = 0x9b05688c;
ctx->state[6] = 0x1f83d9ab;
ctx->state[7] = 0x5be0cd19;
}
void sha256_update_old(SHA256_CTX *ctx, const BYTE data[], size_t len, int verbose)
{
WORD i;
for (i = 0; i < len; ++i) {
ctx->data[ctx->datalen] = data[i];
ctx->datalen++;
if (ctx->datalen == 64) {
sha256_transform(ctx, (const uint32_t*)ctx->data, verbose);
ctx->bitlen += 512;
ctx->datalen = 0;
}
}
}
void sha256_update_from_bytes(SHA256_CTX *ctx, const BYTE data[], size_t len, int verbose)
{
int i;
int rest = len%4;
len >>= 2;
for (i = 0; i < len; i++) {
ctx->data[i] = htobe32(*(uint32_t*)&data[i*4]);
ctx->datalen+=4;
if (ctx->datalen >= 64) {
sha256_transform(ctx, ctx->data, verbose);
ctx->bitlen += 512;
ctx->datalen = 0;
}
}
if (rest){
ctx->data[i] =0;
for (int j=0 ; j<rest ; j++){
ctx->data[i] |= (
(uint32_t)data[i*4 + j])<<(24-(j*8));
}
ctx->datalen+=rest;
}
}
void sha256_update_from_words(SHA256_CTX *ctx, const uint32_t data[], size_t len, int verbose)
{
int i;
int rest = len%4;
len >>= 2;
for (i = 0; i < len; i++) {
ctx->data[i] = data[i];
ctx->datalen+=4;
if (ctx->datalen >= 64) {
sha256_transform(ctx, ctx->data, verbose);
ctx->bitlen += 512;
ctx->datalen = 0;
}
}
if (rest){
if (rest==1) ctx->data[i] = data[i] & 0xFF000000;
if (rest==2) ctx->data[i] = data[i] & 0xFFFF0000;
if (rest==3) ctx->data[i] = data[i] & 0xFFFFFF00;
ctx->datalen+=rest;
}
}
void sha256_final_words(SHA256_CTX *ctx, uint32_t hash[], int verbose)
{
int i = ctx->datalen>>2;
int rest = ctx->datalen%4;
// Pad whatever data is left in the buffer.
ctx->data[i] |= 0x80<<(24-(rest*8));
i++;
if (ctx->datalen < 56) {
while (i < 14)
ctx->data[i++] = 0x00000000;
}
else {
while (i < 16)
ctx->data[i++] = 0x00000000;
sha256_transform(ctx, ctx->data, verbose);
memset(ctx->data, 0, 56);
}
// Append to the padding the total message's length in bits and transform.
ctx->bitlen += ctx->datalen * 8;
ctx->data[15] = (uint32_t)ctx->bitlen;
sha256_transform(ctx, (const uint32_t*)ctx->data, verbose);
memcpy(hash, ctx->state, 32);
}
void sha256_final_bytes(SHA256_CTX *ctx, BYTE hash[], int verbose)
{
int i = ctx->datalen>>2;
int rest = ctx->datalen%4;
// Pad whatever data is left in the buffer.
ctx->data[i] |= 0x80<<(24-(rest*8));
i++;
if (ctx->datalen < 56) {
while (i < 14)
ctx->data[i++] = 0x00000000;
}
else {
while (i < 16)
ctx->data[i++] = 0x00000000;
sha256_transform(ctx, ctx->data, verbose);
memset(ctx->data, 0, 56);
}
// Append to the padding the total message's length in bits and transform.
ctx->bitlen += ctx->datalen * 8;
ctx->data[15] = (uint32_t)ctx->bitlen;
sha256_transform(ctx, (const uint32_t*)ctx->data, verbose);
// Since this implementation uses little endian byte ordering and SHA uses big endian,
// reverse all the bytes when copying the final state to the output hash.
for (i = 0; i < 4; ++i) {
hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
}
}
void sha256_final_old(SHA256_CTX *ctx, BYTE hash[], int verbose)
{
WORD i;
i = ctx->datalen;
// Pad whatever data is left in the buffer.
if (ctx->datalen < 56) {
ctx->data[i++] = 0x80;
while (i < 56)
ctx->data[i++] = 0x00;
}
else {
ctx->data[i++] = 0x80;
while (i < 64)
ctx->data[i++] = 0x00;
sha256_transform(ctx, (const uint32_t*)ctx->data, verbose);
memset(ctx->data, 0, 56);
}
// Append to the padding the total message's length in bits and transform.
ctx->bitlen += ctx->datalen * 8;
ctx->data[63] = ctx->bitlen;
ctx->data[62] = ctx->bitlen >> 8;
ctx->data[61] = ctx->bitlen >> 16;
ctx->data[60] = ctx->bitlen >> 24;
ctx->data[59] = ctx->bitlen >> 32;
ctx->data[58] = ctx->bitlen >> 40;
ctx->data[57] = ctx->bitlen >> 48;
ctx->data[56] = ctx->bitlen >> 56;
sha256_transform(ctx, (const uint32_t*)ctx->data, verbose);
// Since this implementation uses little endian byte ordering and SHA uses big endian,
// reverse all the bytes when copying the final state to the output hash.
for (i = 0; i < 4; ++i) {
hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
}
}