forked from data61/MP-SPDZ
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfloatingpoint.py
693 lines (641 loc) · 23.4 KB
/
floatingpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
import math
from math import log, floor, ceil
from Compiler.instructions import *
from . import types
from . import comparison
from . import program
from . import util
from . import instructions_base
##
## Helper functions for floating point arithmetic
##
def two_power(n):
if isinstance(n, int) and n < 31:
return 2**n
else:
max = types.cint(1) << 31
res = 2**(n%31)
for i in range(n // 31):
res *= max
return res
def shift_two(n, pos):
return n >> pos
def maskRing(a, k):
shift = int(program.Program.prog.options.ring) - k
if program.Program.prog.use_edabit():
r_prime, r = types.sint.get_edabit(k)
elif program.Program.prog.use_dabit:
rr, r = zip(*(types.sint.get_dabit() for i in range(k)))
r_prime = types.sint.bit_compose(rr)
else:
r = [types.sint.get_random_bit() for i in range(k)]
r_prime = types.sint.bit_compose(r)
c = ((a + r_prime) << shift).reveal(False) >> shift
return c, r
def maskField(a, k, kappa):
r_dprime = types.sint()
r_prime = types.sint()
c = types.cint()
r = [types.sint() for i in range(k)]
comparison.PRandM(r_dprime, r_prime, r, k, k, kappa)
# always signed due to usage in equality testing
a += two_power(k)
asm_open(True, c, a + two_power(k) * r_dprime + r_prime)
return c, r
@instructions_base.ret_cisc
def EQZ(a, k, kappa):
prog = program.Program.prog
if prog.use_split():
from GC.types import sbitvec
v = sbitvec(a, k).v
bit = util.tree_reduce(operator.and_, (~b for b in v))
return types.sintbit.conv(bit)
prog.non_linear.check_security(kappa)
return prog.non_linear.eqz(a, k)
def bits(a,m):
""" Get the bits of an int """
if isinstance(a, int):
res = [None]*m
for i in range(m):
res[i] = a & 1
a >>= 1
else:
res = []
from Compiler.types import regint, cint
while m > 0:
aa = regint()
convmodp(aa, a, bitlength=0)
res += [cint(x) for x in aa.bit_decompose(min(64, m))]
m -= 64
if m > 0:
aa = cint()
shrci(aa, a, 64)
a = aa
return res
def carry(b, a, compute_p=True):
""" Carry propogation:
(p,g) = (p_2, g_2)o(p_1, g_1) -> (p_1 & p_2, g_2 | (p_2 & g_1))
"""
if compute_p:
t1 = a[0].bit_and(b[0])
else:
t1 = None
t2 = a[1] + a[0].bit_and(b[1])
return (t1, t2)
def or_op(a, b, void=None):
return util.or_op(a, b)
def mul_op(a, b, void=None):
return a * b
def PreORC(a, kappa=None, m=None, raw=False):
k = len(a)
if k == 1:
return [a[0]]
prog = program.Program.prog
kappa = kappa or prog.security
m = m or k
if isinstance(a[0], types.sgf2n):
max_k = program.Program.prog.galois_length - 1
else:
# assume prime length is power of two
prime_length = 2 ** int(ceil(log(prog.bit_length + kappa, 2)))
max_k = prime_length - kappa - 2
assert(max_k > 0)
if k <= max_k:
p = [None] * m
if m == k:
p[0] = a[0]
if isinstance(a[0], types.sgf2n):
b = comparison.PreMulC([3 - a[i] for i in range(k)])
for i in range(m):
tmp = b[k-1-i]
if not raw:
tmp = tmp.bit_decompose()[0]
p[m-1-i] = 1 - tmp
else:
t = [types.sint() for i in range(m)]
b = comparison.PreMulC([a[i] + 1 for i in range(k)])
for i in range(m):
comparison.Mod2(t[i], b[k-1-i], k, kappa, False)
p[m-1-i] = 1 - t[i]
return p
else:
# not constant-round anymore
s = [PreORC(a[i:i+max_k], kappa, raw=raw) for i in range(0,k,max_k)]
t = PreORC([si[-1] for si in s[:-1]], kappa, raw=raw)
return sum(([or_op(x, y) for x in si]
for si,y in zip(s[1:],t)), s[0])[-m:]
def PreOpL(op, items):
"""
Uses algorithm from SecureSCM WP9 deliverable.
op must be a binary function that outputs a new register
"""
k = len(items)
logk = int(ceil(log(k,2)))
kmax = 2**logk
output = list(items)
for i in range(logk):
for j in range(kmax//(2**(i+1))):
y = two_power(i) + j*two_power(i+1) - 1
for z in range(1, 2**i+1):
if y+z < k:
output[y+z] = op(output[y], output[y+z], j != 0)
return output
def PreOpL2(op, items):
"""
Uses algorithm from SecureSCM WP9 deliverable.
op must be a binary function that outputs a new register
"""
k = len(items)
half = k // 2
output = list(items)
if k == 0:
return []
u = [op(items[2 * i], items[2 * i + 1]) for i in range(half)]
v = PreOpL2(op, u)
for i in range(half):
output[2 * i + 1] = v[i]
for i in range(1, (k + 1) // 2):
output[2 * i] = op(v[i - 1], items[2 * i])
return output
def PreOpN(op, items):
""" Naive PreOp algorithm """
k = len(items)
output = [None]*k
output[0] = items[0]
for i in range(1, k):
output[i] = op(output[i-1], items[i])
return output
def PreOR(a, kappa=None, raw=False):
if comparison.const_rounds:
return PreORC(a, kappa, raw=raw)
else:
return PreOpL(or_op, a)
def KOpL(op, a):
k = len(a)
if k == 1:
return a[0]
else:
t1 = KOpL(op, a[:k//2])
t2 = KOpL(op, a[k//2:])
return op(t1, t2)
def KORL(a, kappa=None):
""" log rounds k-ary OR """
k = len(a)
if k == 1:
return a[0]
else:
t1 = KORL(a[:k//2], kappa)
t2 = KORL(a[k//2:], kappa)
return t1 + t2 - t1.bit_and(t2)
def KORC(a, kappa):
return PreORC(a, kappa, 1)[0]
def KOR(a, kappa):
if comparison.const_rounds:
return KORC(a, kappa)
else:
return KORL(a, None)
def KMul(a):
if comparison.const_rounds:
return comparison.KMulC(a)
else:
return KOpL(mul_op, a)
def Inv(a):
""" Invert a non-zero value """
t = [types.sint() for i in range(3)]
c = [types.cint() for i in range(2)]
one = types.cint()
ldi(one, 1)
inverse(t[0], t[1])
s = t[0]*a
asm_open(True, c[0], s)
# avoid division by zero for benchmarking
divc(c[1], one, c[0])
#divc(c[1], c[0], one)
return c[1]*t[0]
def BitAdd(a, b, bits_to_compute=None):
""" Add the bits a[k-1], ..., a[0] and b[k-1], ..., b[0], return k+1
bits s[0], ... , s[k] """
k = len(a)
if not bits_to_compute:
bits_to_compute = list(range(k))
d = [None] * k
for i in range(1,k):
t = a[i]*b[i]
d[i] = (a[i] + b[i] - 2*t, t)
d[0] = (None, a[0]*b[0])
pg = PreOpL(carry, d)
c = [pair[1] for pair in pg]
s = [None] * (k+1)
if 0 in bits_to_compute:
s[0] = a[0] + b[0] - 2*c[0]
bits_to_compute.remove(0)
for i in bits_to_compute:
s[i] = a[i] + b[i] + c[i-1] - 2*c[i]
s[k] = c[k-1]
return s
def BitDec(a, k, m, kappa, bits_to_compute=None):
return program.Program.prog.non_linear.bit_dec(a, k, m)
def BitDecRingRaw(a, k, m):
comparison.require_ring_size(m, 'bit decomposition')
n_shift = int(program.Program.prog.options.ring) - m
if program.Program.prog.use_split():
x = a.split_to_two_summands(m)
bits = types._bitint.carry_lookahead_adder(x[0], x[1], fewer_inv=False)
return bits[:m]
else:
if program.Program.prog.use_edabit():
r, r_bits = types.sint.get_edabit(m, strict=False)
elif program.Program.prog.use_dabit:
r, r_bits = zip(*(types.sint.get_dabit() for i in range(m)))
r = types.sint.bit_compose(r)
else:
r_bits = [types.sint.get_random_bit() for i in range(m)]
r = types.sint.bit_compose(r_bits)
shifted = ((a - r) << n_shift).reveal(False)
masked = shifted >> n_shift
bits = r_bits[0].bit_adder(r_bits, masked.bit_decompose(m))
return bits
def BitDecRing(a, k, m):
bits = BitDecRingRaw(a, k, m)
# reversing to reduce number of rounds
return [types.sint.conv(bit) for bit in reversed(bits)][::-1]
def BitDecFieldRaw(a, k, m, kappa, bits_to_compute=None):
instructions_base.set_global_vector_size(a.size)
r_dprime = types.sint()
r_prime = types.sint()
c = types.cint()
r = [types.sint() for i in range(m)]
comparison.PRandM(r_dprime, r_prime, r, k, m, kappa)
pow2 = two_power(k + kappa)
asm_open(True, c, pow2 + two_power(k) + a - two_power(m)*r_dprime - r_prime)
res = r[0].bit_adder(r, list(r[0].bit_decompose_clear(c,m)))
instructions_base.reset_global_vector_size()
return res
def BitDecField(a, k, m, kappa, bits_to_compute=None):
res = BitDecFieldRaw(a, k, m, kappa, bits_to_compute)
return [types.sint.conv(bit) for bit in res]
@instructions_base.ret_cisc
def Pow2(a, l, kappa):
m = int(ceil(log(l, 2)))
t = BitDec(a, m, m, kappa)
return Pow2_from_bits(t)
def Pow2_from_bits(bits):
m = len(bits)
t = list(bits)
pow2k = [types.cint() for i in range(m)]
for i in range(m):
pow2k[i] = two_power(2**i)
t[i] = t[i]*pow2k[i] + 1 - t[i]
return KMul(t)
def B2U(a, l, kappa):
pow2a = Pow2(a, l, kappa)
return B2U_from_Pow2(pow2a, l, kappa), pow2a
def B2U_from_Pow2(pow2a, l, kappa):
r = [types.sint() for i in range(l)]
t = types.sint()
c = types.cint()
if program.Program.prog.use_dabit:
r, r_bits = zip(*(types.sint.get_dabit() for i in range(l)))
else:
for i in range(l):
bit(r[i])
r_bits = r
if program.Program.prog.options.ring:
n_shift = int(program.Program.prog.options.ring) - l
assert n_shift > 0
c = ((pow2a + types.sint.bit_compose(r)) << n_shift).reveal(False) >> n_shift
else:
comparison.PRandInt(t, kappa)
asm_open(True, c, pow2a + two_power(l) * t +
sum(two_power(i) * r[i] for i in range(l)))
comparison.program.curr_tape.require_bit_length(l + kappa)
c = list(r_bits[0].bit_decompose_clear(c, l))
x = [r_bits[i].bit_xor(c[i]) for i in range(l)]
#print ' '.join(str(b.value) for b in x)
y = PreOR(x, kappa)
#print ' '.join(str(b.value) for b in y)
return [types.sint.conv(1 - y[i]) for i in range(l)]
def Trunc(a, l, m, kappa=None, compute_modulo=False, signed=False):
""" Oblivious truncation by secret m """
prog = program.Program.prog
kappa = kappa or prog.security
if util.is_constant(m) and not compute_modulo:
# cheaper
res = type(a)(size=a.size)
comparison.Trunc(res, a, l, m, kappa, signed=signed)
return res
if l == 1:
if compute_modulo:
return a * m, 1 + m
else:
return a * (1 - m)
if program.Program.prog.options.ring and not compute_modulo:
return TruncInRing(a, l, Pow2(m, l, kappa))
r = [types.sint() for i in range(l)]
r_dprime = types.sint(0)
r_prime = types.sint(0)
rk = types.sint()
c = types.cint()
ci = [types.cint() for i in range(l)]
d = types.sint()
x, pow2m = B2U(m, l, kappa)
for i in range(l):
bit(r[i])
t1 = two_power(i) * r[i]
t2 = t1*x[i]
r_prime += t2
r_dprime += t1 - t2
if program.Program.prog.options.ring:
n_shift = int(program.Program.prog.options.ring) - l
c = ((a + r_dprime + r_prime) << n_shift).reveal(False) >> n_shift
else:
comparison.PRandInt(rk, kappa)
r_dprime += two_power(l) * rk
asm_open(True, c, a + r_dprime + r_prime)
for i in range(1,l):
ci[i] = c % two_power(i)
c_dprime = sum(ci[i]*(x[i-1] - x[i]) for i in range(1,l))
d = program.Program.prog.non_linear.ltz(c_dprime - r_prime, l, kappa)
if compute_modulo:
b = c_dprime - r_prime + pow2m * d
return b, pow2m
else:
to_shift = a - c_dprime + r_prime
if program.Program.prog.options.ring:
shifted = TruncInRing(to_shift, l, pow2m)
else:
pow2inv = Inv(pow2m)
shifted = to_shift * pow2inv
b = shifted - d
return b
def TruncInRing(to_shift, l, pow2m):
n_shift = int(program.Program.prog.options.ring) - l
bits = BitDecRing(to_shift, l, l)
rev = types.sint.bit_compose(reversed(bits))
rev <<= n_shift
rev *= pow2m
r_bits = [types.sint.get_random_bit() for i in range(l)]
r = types.sint.bit_compose(r_bits)
shifted = (rev - (r << n_shift)).reveal(False)
masked = shifted >> n_shift
bits = types.intbitint.bit_adder(r_bits, masked.bit_decompose(l))
return types.sint.bit_compose(reversed(bits))
def SplitInRing(a, l, m):
if l == 1:
return m.if_else(a, 0), m.if_else(0, a), 1
pow2m = Pow2(m, l, None)
upper = TruncInRing(a, l, pow2m)
lower = a - upper * pow2m
return lower, upper, pow2m
def TruncRoundNearestAdjustOverflow(a, length, target_length, kappa):
t = comparison.TruncRoundNearest(a, length, length - target_length, kappa)
overflow = t.greater_equal(two_power(target_length), target_length + 1, kappa)
if program.Program.prog.options.ring:
s = (1 - overflow) * t + \
comparison.TruncLeakyInRing(overflow * t, length, 1, False)
else:
s = (1 - overflow) * t + overflow * t / 2
return s, overflow
def Int2FL(a, gamma, l, kappa=None):
lam = gamma - 1
s = a.less_than(0, gamma, security=kappa)
z = a.equal(0, gamma, security=kappa)
a = s.if_else(-a, a)
a_bits = a.bit_decompose(lam, security=kappa)
a_bits.reverse()
b = PreOR(a_bits, kappa)
t = a * (1 + a.bit_compose(1 - b_i for b_i in b))
p = a.popcnt_bits(b) - lam
if gamma - 1 > l:
if types.sfloat.round_nearest:
v, overflow = TruncRoundNearestAdjustOverflow(t, gamma - 1, l, kappa)
p = p + overflow
else:
v = t.right_shift(gamma - l - 1, gamma - 1, kappa, signed=False)
else:
v = 2**(l-gamma+1) * t
p = (p + gamma - 1 - l) * z.bit_not()
return v, p, z, s
def FLRound(x, mode):
""" Rounding with floating point output.
*mode*: 0 -> floor, 1 -> ceil, -1 > trunc """
v1, p1, z1, s1, l, k = x.v, x.p, x.z, x.s, x.vlen, x.plen
a = types.sint()
comparison.LTZ(a, p1, k, x.kappa)
b = p1.less_than(-l + 1, k, x.kappa)
v2, inv_2pow_p1 = Trunc(v1, l, -a * (1 - b) * x.p, x.kappa, True)
c = EQZ(v2, l, x.kappa)
if mode == -1:
away_from_zero = 0
mode = x.s
else:
away_from_zero = mode + s1 - 2 * mode * s1
v = v1 - v2 + (1 - c) * inv_2pow_p1 * away_from_zero
d = v.equal(two_power(l), l + 1, x.kappa)
v = d * two_power(l-1) + (1 - d) * v
v = a * ((1 - b) * v + b * away_from_zero * two_power(l-1)) + (1 - a) * v1
s = (1 - b * mode) * s1
z = or_op(EQZ(v, l, x.kappa), z1)
v = v * (1 - z)
p = ((p1 + d * a) * (1 - b) + b * away_from_zero * (1 - l)) * (1 - z)
return v, p, z, s
@instructions_base.ret_cisc
def TruncPr(a, k, m, kappa=None, signed=True):
""" Probabilistic truncation [a/2^m + u]
where Pr[u = 1] = (a % 2^m) / 2^m
"""
nl = program.Program.prog.non_linear
nl.check_security(kappa)
return nl.trunc_pr(a, k, m, signed)
def TruncPrRing(a, k, m, signed=True):
if m == 0:
return a
n_ring = int(program.Program.prog.options.ring)
comparison.require_ring_size(k, 'truncation')
if k == n_ring:
program.Program.prog.curr_tape.require_bit_length(1)
if program.Program.prog.use_edabit():
a += types.sint.get_edabit(m, True)[0]
else:
for i in range(m):
a += types.sint.get_random_bit() << i
return comparison.TruncLeakyInRing(a, k, m, signed=signed)
else:
from .types import sint
prog = program.Program.prog
if signed and prog.use_trunc_pr != -1:
a += (1 << (k - 1))
if program.Program.prog.use_trunc_pr:
res = sint()
trunc_pr(res, a, k, m)
else:
# extra bit to mask overflow
prog = program.Program.prog
prog.curr_tape.require_bit_length(1)
if prog.use_edabit() or prog.use_split() > 2:
lower = sint.get_random_int(m)
upper = sint.get_random_int(k - m)
msb = sint.get_random_bit()
r = (msb << k) + (upper << m) + lower
else:
r_bits = [sint.get_random_bit() for i in range(k + 1)]
r = sint.bit_compose(r_bits)
upper = sint.bit_compose(r_bits[m:k])
msb = r_bits[-1]
n_shift = n_ring - (k + 1)
tmp = a + r
masked = (tmp << n_shift).reveal(False)
shifted = (masked << 1 >> (n_shift + m + 1))
overflow = msb.bit_xor(masked >> (n_ring - 1))
res = shifted - upper + \
(overflow << (k - m))
if signed and prog.use_trunc_pr != -1:
res -= (1 << (k - m - 1))
return res
def TruncPrField(a, k, m, kappa=None):
if m == 0:
return a
if kappa is None:
kappa = 40
b = two_power(k-1) + a
r_prime, r_dprime = types.sint(), types.sint()
comparison.PRandM(r_dprime, r_prime, [types.sint() for i in range(m)],
k, m, kappa, use_dabit=False)
two_to_m = two_power(m)
r = two_to_m * r_dprime + r_prime
c = (b + r).reveal(False)
c_prime = c % two_to_m
a_prime = c_prime - r_prime
d = (a - a_prime) / two_to_m
return d
@instructions_base.ret_cisc
def SDiv(a, b, l, kappa, round_nearest=False):
theta = int(ceil(log(l / 3.5) / log(2)))
alpha = two_power(2*l)
w = types.cint(int(2.9142 * 2 ** l)) - 2 * b
x = alpha - b * w
y = a * w
y = y.round(2 * l + 1, l, kappa, round_nearest, signed=False)
x2 = types.sint()
comparison.Mod2m(x2, x, 2 * l + 1, l, kappa, True)
x1 = comparison.TruncZeros(x - x2, 2 * l + 1, l, True)
for i in range(theta-1):
y = y * (x1 + two_power(l)) + (y * x2).round(2 * l, l, kappa,
round_nearest,
signed=False)
y = y.round(2 * l + 1, l, kappa, round_nearest, signed=False)
x = x1 * x2 + (x2**2).round(2 * l + 1, l + 1, kappa, round_nearest,
signed=False)
x = x1 * x1 + x.round(2 * l + 1, l - 1, kappa, round_nearest,
signed=False)
x2 = types.sint()
comparison.Mod2m(x2, x, 2 * l, l, kappa, False)
x1 = comparison.TruncZeros(x - x2, 2 * l + 1, l, True)
y = y * (x1 + two_power(l)) + (y * x2).round(2 * l, l, kappa,
round_nearest, signed=False)
y = y.round(2 * l + 1, l + 1, kappa, round_nearest)
return y
def SDiv_mono(a, b, l, kappa):
theta = int(ceil(log(l / 3.5) / log(2)))
alpha = two_power(2*l)
w = types.cint(int(2.9142 * two_power(l))) - 2 * b
x = alpha - b * w
y = a * w
y = TruncPr(y, 2 * l + 1, l + 1, kappa)
for i in range(theta-1):
y = y * (alpha + x)
# keep y with l bits
y = TruncPr(y, 3 * l, 2 * l, kappa)
x = x**2
# keep x with 2l bits
x = TruncPr(x, 4 * l, 2 * l, kappa)
y = y * (alpha + x)
y = TruncPr(y, 3 * l, 2 * l, kappa)
return y
# LT bit comparison on shared bit values
# Assumes b has the larger size
# - From the paper
# Unconditionally Secure Constant-Rounds Multi-party Computation
# for Equality, Comparison, Bits and Exponentiation
def BITLT(a, b, bit_length):
from .types import sint, regint, longint, cint
e = [None]*bit_length
g = [None]*bit_length
h = [None]*bit_length
for i in range(bit_length):
# Compute the XOR (reverse order of e for PreOpL)
e[bit_length-i-1] = util.bit_xor(a[i], b[i])
f = PreOpL(or_op, e)
g[bit_length-1] = f[0]
for i in range(bit_length-1):
# reverse order of f due to PreOpL
g[i] = f[bit_length-i-1]-f[bit_length-i-2]
ans = 0
for i in range(bit_length):
h[i] = g[i].bit_and(b[i])
ans = ans + h[i]
return ans
# Exact BitDec with no need for a statistical gap
# - From the paper
# Multiparty Computation for Interval, Equality, and Comparison without
# Bit-Decomposition Protocol
def BitDecFull(a, n_bits=None, maybe_mixed=False):
from .library import get_program, do_while, if_, break_point
from .types import sint, regint, longint, cint
p = get_program().prime
assert p
bit_length = p.bit_length()
n_bits = n_bits or bit_length
assert n_bits <= bit_length
logp = int(round(math.log(p, 2)))
if abs(p - 2 ** logp) / p < 2 ** -get_program().security:
# inspired by Rabbit (https://eprint.iacr.org/2021/119)
# no need for exact randomness generation
# if modulo a power of two is close enough
if get_program().use_edabit():
b, bbits = sint.get_edabit(logp, True, size=a.size)
if logp != bit_length:
from .GC.types import sbits
bbits += [0]
else:
bbits = [sint.get_random_bit(size=a.size) for i in range(logp)]
b = sint.bit_compose(bbits)
if logp != bit_length:
bbits += [sint(0, size=a.size)]
else:
bbits = [sint(size=a.size) for i in range(bit_length)]
tbits = [[sint(size=1) for i in range(bit_length)] for j in range(a.size)]
pbits = util.bit_decompose(p)
# Loop until we get some random integers less than p
done = [regint(0) for i in range(a.size)]
@do_while
def get_bits_loop():
for j in range(a.size):
@if_(done[j] == 0)
def _():
for i in range(bit_length):
tbits[j][i].link(sint.get_random_bit())
c = regint(BITLT(tbits[j], pbits, bit_length).reveal(False))
done[j].link(c)
return (sum(done) != a.size)
for j in range(a.size):
for i in range(bit_length):
movs(bbits[i][j], tbits[j][i])
b = sint.bit_compose(bbits)
c = (a-b).reveal(False)
cmodp = c
t = bbits[0].bit_decompose_clear(p - c, bit_length)
c = longint(c, bit_length)
czero = (c==0)
q = bbits[0].long_one() - comparison.BitLTL_raw(bbits, t)
fbar = [bbits[0].clear_type.conv(cint(x))
for x in ((1<<bit_length)+c-p).bit_decompose(n_bits)]
fbard = bbits[0].bit_decompose_clear(cmodp, n_bits)
g = [q.if_else(fbar[i], fbard[i]) for i in range(n_bits)]
h = bbits[0].bit_adder(bbits, g)
abits = [bbits[0].clear_type(cint(czero)).if_else(bbits[i], h[i])
for i in range(n_bits)]
if maybe_mixed:
return abits
else:
return [sint.conv(bit) for bit in abits]