@@ -243,16 +243,16 @@ def linkage_tree(X, connectivity=None, n_components=None, copy=True,
243
243
244
244
The inertia matrix uses a Heapq-based representation.
245
245
246
- This is the structured version, that takes into account a some topological
246
+ This is the structured version, that takes into account some topological
247
247
structure between samples.
248
248
249
249
Parameters
250
250
----------
251
251
X : array of shape (n_samples, n_features)
252
- feature matrix representing n_samples samples to be clustered
252
+ feature matrix representing n_samples samples to be clustered
253
253
254
254
connectivity : sparse matrix (optional).
255
- connectivity matrix. Defines for each sample the neigbhoring samples
255
+ connectivity matrix. Defines for each sample the neighboring samples
256
256
following a given structure of the data. The matrix is assumed to
257
257
be symmetric and only the upper triangular half is used.
258
258
Default is None, i.e, the Ward algorithm is unstructured.
@@ -284,7 +284,7 @@ def linkage_tree(X, connectivity=None, n_components=None, copy=True,
284
284
The number of connected components in the graph.
285
285
286
286
n_leaves : int
287
- The number of leaves in the tree
287
+ The number of leaves in the tree.
288
288
289
289
parents : 1D array, shape (n_nodes, ) or None
290
290
The parent of each node. Only returned when a connectivity matrix
@@ -580,7 +580,7 @@ class Ward(AgglomerativeClustering):
580
580
connectivity : sparse matrix (optional)
581
581
Connectivity matrix. Defines for each sample the neigbhoring
582
582
samples following a given structure of the data.
583
- Default is None, i.e, the hiearchical clustering algorithm is
583
+ Default is None, i.e, the hierarchical clustering algorithm is
584
584
unstructured.
585
585
586
586
memory : Instance of joblib.Memory or string (optional)
@@ -600,7 +600,7 @@ class Ward(AgglomerativeClustering):
600
600
useful to decrease computation time if the number of clusters is
601
601
not small compared to the number of samples. This option is
602
602
useful only when specifying a connectivity matrix. Note also that
603
- when varying the number of cluster and using caching, it may
603
+ when varying the number of clusters and using caching, it may
604
604
be advantageous to compute the full tree.
605
605
606
606
@@ -647,7 +647,7 @@ class WardAgglomeration(AgglomerationTransform, Ward):
647
647
connectivity : sparse matrix
648
648
connectivity matrix. Defines for each feature the neigbhoring
649
649
features following a given structure of the data.
650
- Default is None, i.e, the hiearchical agglomeration algorithm is
650
+ Default is None, i.e, the hierarchical agglomeration algorithm is
651
651
unstructured.
652
652
653
653
memory : Instance of joblib.Memory or string
@@ -682,7 +682,7 @@ class WardAgglomeration(AgglomerationTransform, Ward):
682
682
cluster labels for each feature
683
683
684
684
`n_leaves_` : int
685
- Number of leaves in the hiearchical tree.
685
+ Number of leaves in the hierarchical tree.
686
686
687
687
"""
688
688
0 commit comments