forked from VowpalWabbit/vowpal_wabbit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gd_mf.cc
316 lines (259 loc) · 10.6 KB
/
gd_mf.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
/*
Copyright (c) by respective owners including Yahoo!, Microsoft, and
individual contributors. All rights reserved. Released under a BSD (revised)
license as described in the file LICENSE.
*/
#include <fstream>
#include <float.h>
#include <string.h>
#include <stdio.h>
#ifdef _WIN32
#include <winsock2.h>
#else
#include <netdb.h>
#endif
#include "gd.h"
#include "rand48.h"
#include "reductions.h"
#include "vw_exception.h"
using namespace std;
using namespace LEARNER;
struct gdmf
{ vw* all;//regressor, printing
uint32_t rank;
size_t no_win_counter;
uint64_t early_stop_thres;
};
void mf_print_offset_features(gdmf& d, example& ec, size_t offset)
{ vw& all = *d.all;
weight* weights = all.reg.weight_vector;
uint64_t mask = all.reg.weight_mask;
for (features& fs : ec)
{ bool audit = !fs.space_names.empty();
for (auto& f : fs.values_indices_audit())
{ cout << '\t';
if (audit)
cout << f.audit().get()->first << '^' << f.audit().get()->second << ':';
cout << f.index() <<"(" << ((f.index() + offset) & mask) << ")" << ':' << f.value();
cout << ':' << weights[(f.index() + offset) & mask];
}
}
for (string& i : all.pairs)
if (ec.feature_space[(unsigned char)i[0]].size() > 0 && ec.feature_space[(unsigned char)i[1]].size() > 0)
{ /* print out nsk^feature:hash:value:weight:nsk^feature^:hash:value:weight:prod_weights */
for (size_t k = 1; k <= d.rank; k++)
{
for (features::iterator_all& f1 : ec.feature_space[(unsigned char)i[0]].values_indices_audit())
for (features::iterator_all& f2 : ec.feature_space[(unsigned char)i[1]].values_indices_audit())
{ cout << '\t' << f1.audit().get()->first << k << '^' << f1.audit().get()->second << ':' << ((f1.index()+k)&mask)
<<"(" << ((f1.index() + offset +k) & mask) << ")" << ':' << f1.value();
cout << ':' << weights[(f1.index() + offset + k) & mask];
cout << ':' << f2.audit().get()->first << k << '^' << f2.audit().get()->second << ':' << ((f2.index() + k + d.rank)&mask)
<<"(" << ((f2.index() + offset +k+d.rank) & mask) << ")" << ':' << f2.value();
cout << ':' << weights[(f2.index() + offset + k+d.rank) & mask];
cout << ':' << weights[(f1.index() + offset + k) & mask] * weights[(f2.index() + offset + k + d.rank) & mask];
}
}
}
if (all.triples.begin() != all.triples.end())
THROW("cannot use triples in matrix factorization");
cout << endl;
}
void mf_print_audit_features(gdmf& d, example& ec, size_t offset)
{ print_result(d.all->stdout_fileno,ec.pred.scalar,-1,ec.tag);
mf_print_offset_features(d, ec, offset);
}
float mf_predict(gdmf& d, example& ec)
{ vw& all = *d.all;
label_data& ld = ec.l.simple;
float prediction = ld.initial;
for (string& i : d.all->pairs)
{ ec.num_features -= ec.feature_space[(int)i[0]].size() * ec.feature_space[(int)i[1]].size();
ec.num_features += ec.feature_space[(int)i[0]].size() * d.rank;
ec.num_features += ec.feature_space[(int)i[1]].size() * d.rank;
}
// clear stored predictions
ec.topic_predictions.erase();
float linear_prediction = 0.;
// linear terms
for (features& fs : ec)
GD::foreach_feature<float, GD::vec_add>(all.reg.weight_vector, all.reg.weight_mask, fs, linear_prediction);
// store constant + linear prediction
// note: constant is now automatically added
ec.topic_predictions.push_back(linear_prediction);
prediction += linear_prediction;
// interaction terms
for (string& i : d.all->pairs)
{ if (ec.feature_space[(int)i[0]].size() > 0 && ec.feature_space[(int)i[1]].size() > 0)
{ for (uint64_t k = 1; k <= d.rank; k++)
{ // x_l * l^k
// l^k is from index+1 to index+d.rank
//float x_dot_l = sd_offset_add(weights, mask, ec.atomics[(int)(*i)[0]].begin(), ec.atomics[(int)(*i)[0]].end(), k);
float x_dot_l = 0.;
GD::foreach_feature<float, GD::vec_add>(all.reg.weight_vector, all.reg.weight_mask, ec.feature_space[(int)i[0]], x_dot_l, k);
// x_r * r^k
// r^k is from index+d.rank+1 to index+2*d.rank
//float x_dot_r = sd_offset_add(weights, mask, ec.atomics[(int)(*i)[1]].begin(), ec.atomics[(int)(*i)[1]].end(), k+d.rank);
float x_dot_r = 0.;
GD::foreach_feature<float,GD::vec_add>(all.reg.weight_vector, all.reg.weight_mask, ec.feature_space[(int)i[1]], x_dot_r, k+d.rank);
prediction += x_dot_l * x_dot_r;
// store prediction from interaction terms
ec.topic_predictions.push_back(x_dot_l);
ec.topic_predictions.push_back(x_dot_r);
}
}
}
if (all.triples.begin() != all.triples.end())
THROW("cannot use triples in matrix factorization");
// ec.topic_predictions has linear, x_dot_l_1, x_dot_r_1, x_dot_l_2, x_dot_r_2, ...
ec.partial_prediction = prediction;
all.set_minmax(all.sd, ld.label);
ec.pred.scalar = GD::finalize_prediction(all.sd, ec.partial_prediction);
if (ld.label != FLT_MAX)
ec.loss = all.loss->getLoss(all.sd, ec.pred.scalar, ld.label) * ec.weight;
if (all.audit)
mf_print_audit_features(d, ec, 0);
return ec.pred.scalar;
}
void sd_offset_update(weight* weights, uint64_t mask, features& fs, uint64_t offset, float update, float regularization)
{ for (size_t i = 0; i < fs.size(); i++)
weights[(fs.indicies[i] + offset) & mask] += update * fs.values[i] - regularization * weights[(fs.indicies[i] + offset) & mask];
}
void mf_train(gdmf& d, example& ec)
{ vw& all = *d.all;
weight* weights = all.reg.weight_vector;
uint64_t mask = all.reg.weight_mask;
label_data& ld = ec.l.simple;
// use final prediction to get update size
// update = eta_t*(y-y_hat) where eta_t = eta/(3*t^p) * importance weight
float eta_t = all.eta/pow(ec.example_t,all.power_t) / 3.f * ec.weight;
float update = all.loss->getUpdate(ec.pred.scalar, ld.label, eta_t, 1.); //ec.total_sum_feat_sq);
float regularization = eta_t * all.l2_lambda;
// linear update
for (features& fs: ec)
sd_offset_update(weights, mask, fs, 0, update, regularization);
// quadratic update
for (string& i : all.pairs)
{ if (ec.feature_space[(int)i[0]].size() > 0 && ec.feature_space[(int)i[1]].size() > 0)
{
// update l^k weights
for (size_t k = 1; k <= d.rank; k++)
{ // r^k \cdot x_r
float r_dot_x = ec.topic_predictions[2*k];
// l^k <- l^k + update * (r^k \cdot x_r) * x_l
sd_offset_update(weights, mask, ec.feature_space[(int)i[0]], k, update*r_dot_x, regularization);
}
// update r^k weights
for (size_t k = 1; k <= d.rank; k++)
{ // l^k \cdot x_l
float l_dot_x = ec.topic_predictions[2*k-1];
// r^k <- r^k + update * (l^k \cdot x_l) * x_r
sd_offset_update(weights, mask, ec.feature_space[(int)i[1]], k+d.rank, update*l_dot_x, regularization);
}
}
}
if (all.triples.begin() != all.triples.end())
THROW("cannot use triples in matrix factorization");
}
void save_load(gdmf& d, io_buf& model_file, bool read, bool text)
{ vw* all = d.all;
uint64_t length = (uint64_t)1 << all->num_bits;
uint64_t stride_shift = all->reg.stride_shift;
if(read)
{ initialize_regressor(*all);
if(all->random_weights)
for (size_t j = 0; j < (length << stride_shift); j++)
all->reg.weight_vector[j] = (float) (0.1 * frand48());
}
if (model_file.files.size() > 0)
{ uint64_t i = 0;
size_t brw = 1;
do
{ brw = 0;
size_t K = d.rank*2+1;
stringstream msg;
msg << i << " ";
brw += bin_text_read_write_fixed(model_file,(char *)&i, sizeof (i),
"", read, msg, text);
if (brw != 0)
for (uint64_t k = 0; k < K; k++)
{ uint64_t ndx = (i << stride_shift)+k;
weight* v = &(all->reg.weight_vector[ndx]);
msg << v << " ";
brw += bin_text_read_write_fixed(model_file,(char *)v, sizeof (*v),
"", read, msg, text);
}
if (text)
{
msg << "\n";
brw += bin_text_read_write_fixed(model_file, nullptr, 0,
"", read, msg,text);
}
if (!read)
i++;
}
while ((!read && i < length) || (read && brw >0));
}
}
void end_pass(gdmf& d)
{ vw* all = d.all;
all->eta *= all->eta_decay_rate;
if (all->save_per_pass)
save_predictor(*all, all->final_regressor_name, all->current_pass);
all->current_pass++;
if(!all->holdout_set_off)
{ if(summarize_holdout_set(*all, d.no_win_counter))
finalize_regressor(*all, all->final_regressor_name);
if((d.early_stop_thres == d.no_win_counter) &&
((all->check_holdout_every_n_passes <= 1) ||
((all->current_pass % all->check_holdout_every_n_passes) == 0)))
set_done(*all);
}
}
void predict(gdmf& d, base_learner&, example& ec) { mf_predict(d,ec); }
void learn(gdmf& d, base_learner&, example& ec)
{ vw& all = *d.all;
mf_predict(d, ec);
if (all.training && ec.l.simple.label != FLT_MAX)
mf_train(d, ec);
}
base_learner* gd_mf_setup(vw& all)
{ if (missing_option<uint32_t, true>(all, "rank", "rank for matrix factorization."))
return nullptr;
if (all.vm.count("adaptive"))
THROW("adaptive is not implemented for matrix factorization");
if (all.vm.count("normalized"))
THROW("normalized is not implemented for matrix factorization");
if (all.vm.count("exact_adaptive_norm"))
THROW("normalized adaptive updates is not implemented for matrix factorization");
if (all.vm.count("bfgs") || all.vm.count("conjugate_gradient"))
THROW("bfgs is not implemented for matrix factorization");
gdmf& data = calloc_or_throw<gdmf>();
data.all = &all;
data.rank = all.vm["rank"].as<uint32_t>();
data.no_win_counter = 0;
data.early_stop_thres = 3;
// store linear + 2*rank weights per index, round up to power of two
float temp = ceilf(logf((float)(data.rank*2+1)) / logf (2.f));
all.reg.stride_shift = (size_t) temp;
all.random_weights = true;
if(!all.holdout_set_off)
{ all.sd->holdout_best_loss = FLT_MAX;
if(all.vm.count("early_terminate"))
data.early_stop_thres = all.vm["early_terminate"].as< size_t>();
}
if(!all.vm.count("learning_rate") && !all.vm.count("l"))
all.eta = 10; //default learning rate to 10 for non default update rule
//default initial_t to 1 instead of 0
if(!all.vm.count("initial_t"))
{ all.sd->t = 1.f;
all.sd->weighted_unlabeled_examples = 1.f;
all.initial_t = 1.f;
}
all.eta *= powf((float)(all.sd->t), all.power_t);
learner<gdmf>& l = init_learner(&data, learn, 1 << all.reg.stride_shift);
l.set_predict(predict);
l.set_save_load(save_load);
l.set_end_pass(end_pass);
return make_base(l);
}