-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
345 lines (295 loc) · 13.5 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import csv
import itertools
import logging
import operator
try:
from cStringIO import StringIO
except ImportError:
from StringIO import StringIO
import psycopg2
from openerp.osv import orm, fields
from openerp.tools.translate import _
FIELDS_RECURSION_LIMIT = 2
ERROR_PREVIEW_BYTES = 200
_logger = logging.getLogger(__name__)
class ir_import(orm.TransientModel):
_name = 'base_import.import'
# allow imports to survive for 12h in case user is slow
_transient_max_hours = 12.0
_columns = {
'res_model': fields.char('Model'),
'file': fields.binary(
'File', help="File to check and/or import, raw binary (not base64)"),
'file_name': fields.char('File Name'),
'file_type': fields.char('File Type'),
}
def get_fields(self, cr, uid, model, context=None,
depth=FIELDS_RECURSION_LIMIT):
""" Recursively get fields for the provided model (through
fields_get) and filter them according to importability
The output format is a list of ``Field``, with ``Field``
defined as:
.. class:: Field
.. attribute:: id (str)
A non-unique identifier for the field, used to compute
the span of the ``required`` attribute: if multiple
``required`` fields have the same id, only one of them
is necessary.
.. attribute:: name (str)
The field's logical (Odoo) name within the scope of
its parent.
.. attribute:: string (str)
The field's human-readable name (``@string``)
.. attribute:: required (bool)
Whether the field is marked as required in the
model. Clients must provide non-empty import values
for all required fields or the import will error out.
.. attribute:: fields (list(Field))
The current field's subfields. The database and
external identifiers for m2o and m2m fields; a
filtered and transformed fields_get for o2m fields (to
a variable depth defined by ``depth``).
Fields with no sub-fields will have an empty list of
sub-fields.
:param str model: name of the model to get fields form
:param int landing: depth of recursion into o2m fields
"""
model_obj = self.pool[model]
fields = [{
'id': 'id',
'name': 'id',
'string': _("External ID"),
'required': False,
'fields': [],
}]
fields_got = model_obj.fields_get(cr, uid, context=context)
blacklist = orm.MAGIC_COLUMNS + [model_obj.CONCURRENCY_CHECK_FIELD]
for name, field in fields_got.iteritems():
if name in blacklist:
continue
# an empty string means the field is deprecated, @deprecated must
# be absent or False to mean not-deprecated
if field.get('deprecated', False) is not False:
continue
if field.get('readonly'):
states = field.get('states')
if not states:
continue
# states = {state: [(attr, value), (attr2, value2)], state2:...}
if not any(attr == 'readonly' and value is False
for attr, value in itertools.chain.from_iterable(
states.itervalues())):
continue
f = {
'id': name,
'name': name,
'string': field['string'],
# Y U NO ALWAYS HAS REQUIRED
'required': bool(field.get('required')),
'fields': [],
}
if field['type'] in ('many2many', 'many2one'):
f['fields'] = [
dict(f, name='id', string=_("External ID")),
dict(f, name='.id', string=_("Database ID")),
]
elif field['type'] == 'one2many' and depth:
f['fields'] = self.get_fields(
cr, uid, field['relation'], context=context, depth=depth-1)
if self.pool['res.users'].has_group(cr, uid, 'base.group_no_one'):
f['fields'].append({'id' : '.id', 'name': '.id', 'string': _("Database ID"), 'required': False, 'fields': []})
fields.append(f)
# TODO: cache on model?
return fields
def _read_csv(self, record, options):
""" Returns a CSV-parsed iterator of all empty lines in the file
:throws csv.Error: if an error is detected during CSV parsing
:throws UnicodeDecodeError: if ``options.encoding`` is incorrect
"""
csv_iterator = csv.reader(
StringIO(record.file),
quotechar=str(options['quoting']),
delimiter=str(options['separator']))
csv_nonempty = itertools.ifilter(None, csv_iterator)
# TODO: guess encoding with chardet? Or https://github.com/aadsm/jschardet
encoding = options.get('encoding', 'utf-8')
return itertools.imap(
lambda row: [item.decode(encoding) for item in row],
csv_nonempty)
def _match_header(self, header, fields, options):
""" Attempts to match a given header to a field of the
imported model.
:param str header: header name from the CSV file
:param fields:
:param dict options:
:returns: an empty list if the header couldn't be matched, or
all the fields to traverse
:rtype: list(Field)
"""
for field in fields:
# FIXME: should match all translations & original
# TODO: use string distance (levenshtein? hamming?)
if header == field['name'] \
or header.lower() == field['string'].lower():
return [field]
if '/' not in header:
return []
# relational field path
traversal = []
subfields = fields
# Iteratively dive into fields tree
for section in header.split('/'):
# Strip section in case spaces are added around '/' for
# readability of paths
match = self._match_header(section.strip(), subfields, options)
# Any match failure, exit
if not match: return []
# prep subfields for next iteration within match[0]
field = match[0]
subfields = field['fields']
traversal.append(field)
return traversal
def _match_headers(self, rows, fields, options):
""" Attempts to match the imported model's fields to the
titles of the parsed CSV file, if the file is supposed to have
headers.
Will consume the first line of the ``rows`` iterator.
Returns a pair of (None, None) if headers were not requested
or the list of headers and a dict mapping cell indices
to key paths in the ``fields`` tree
:param Iterator rows:
:param dict fields:
:param dict options:
:rtype: (None, None) | (list(str), dict(int: list(str)))
"""
if not options.get('headers'):
return None, None
headers = next(rows)
return headers, dict(
(index, [field['name'] for field in self._match_header(header, fields, options)] or None)
for index, header in enumerate(headers)
)
def parse_preview(self, cr, uid, id, options, count=10, context=None):
""" Generates a preview of the uploaded files, and performs
fields-matching between the import's file data and the model's
columns.
If the headers are not requested (not options.headers),
``matches`` and ``headers`` are both ``False``.
:param id: identifier of the import
:param int count: number of preview lines to generate
:param options: format-specific options.
CSV: {encoding, quoting, separator, headers}
:type options: {str, str, str, bool}
:returns: {fields, matches, headers, preview} | {error, preview}
:rtype: {dict(str: dict(...)), dict(int, list(str)), list(str), list(list(str))} | {str, str}
"""
(record,) = self.browse(cr, uid, [id], context=context)
fields = self.get_fields(cr, uid, record.res_model, context=context)
try:
rows = self._read_csv(record, options)
headers, matches = self._match_headers(rows, fields, options)
# Match should have consumed the first row (iif headers), get
# the ``count`` next rows for preview
preview = list(itertools.islice(rows, count))
assert preview, "CSV file seems to have no content"
return {
'fields': fields,
'matches': matches or False,
'headers': headers or False,
'preview': preview,
}
except Exception, e:
# Due to lazy generators, UnicodeDecodeError (for
# instance) may only be raised when serializing the
# preview to a list in the return.
_logger.debug("Error during CSV parsing preview", exc_info=True)
return {
'error': str(e),
# iso-8859-1 ensures decoding will always succeed,
# even if it yields non-printable characters. This is
# in case of UnicodeDecodeError (or csv.Error
# compounded with UnicodeDecodeError)
'preview': record.file[:ERROR_PREVIEW_BYTES]
.decode( 'iso-8859-1'),
}
def _convert_import_data(self, record, fields, options, context=None):
""" Extracts the input browse_record and fields list (with
``False``-y placeholders for fields to *not* import) into a
format Model.import_data can use: a fields list without holes
and the precisely matching data matrix
:param browse_record record:
:param list(str|bool): fields
:returns: (data, fields)
:rtype: (list(list(str)), list(str))
:raises ValueError: in case the import data could not be converted
"""
# Get indices for non-empty fields
indices = [index for index, field in enumerate(fields) if field]
if not indices:
raise ValueError(_("You must configure at least one field to import"))
# If only one index, itemgetter will return an atom rather
# than a 1-tuple
if len(indices) == 1: mapper = lambda row: [row[indices[0]]]
else: mapper = operator.itemgetter(*indices)
# Get only list of actually imported fields
import_fields = filter(None, fields)
rows_to_import = self._read_csv(record, options)
if options.get('headers'):
rows_to_import = itertools.islice(
rows_to_import, 1, None)
data = [
row for row in itertools.imap(mapper, rows_to_import)
# don't try inserting completely empty rows (e.g. from
# filtering out o2m fields)
if any(row)
]
return data, import_fields
def do(self, cr, uid, id, fields, options, dryrun=False, context=None):
""" Actual execution of the import
:param fields: import mapping: maps each column to a field,
``False`` for the columns to ignore
:type fields: list(str|bool)
:param dict options:
:param bool dryrun: performs all import operations (and
validations) but rollbacks writes, allows
getting as much errors as possible without
the risk of clobbering the database.
:returns: A list of errors. If the list is empty the import
executed fully and correctly. If the list is
non-empty it contains dicts with 3 keys ``type`` the
type of error (``error|warning``); ``message`` the
error message associated with the error (a string)
and ``record`` the data which failed to import (or
``false`` if that data isn't available or provided)
:rtype: list({type, message, record})
"""
cr.execute('SAVEPOINT import')
(record,) = self.browse(cr, uid, [id], context=context)
try:
data, import_fields = self._convert_import_data(
record, fields, options, context=context)
except ValueError, e:
return [{
'type': 'error',
'message': unicode(e),
'record': False,
}]
_logger.info('importing %d rows...', len(data))
import_result = self.pool[record.res_model].load(
cr, uid, import_fields, data, context=context)
_logger.info('done')
# If transaction aborted, RELEASE SAVEPOINT is going to raise
# an InternalError (ROLLBACK should work, maybe). Ignore that.
# TODO: to handle multiple errors, create savepoint around
# write and release it in case of write error (after
# adding error to errors array) => can keep on trying to
# import stuff, and rollback at the end if there is any
# error in the results.
try:
if dryrun:
cr.execute('ROLLBACK TO SAVEPOINT import')
else:
cr.execute('RELEASE SAVEPOINT import')
except psycopg2.InternalError:
pass
return import_result['messages']