-
Notifications
You must be signed in to change notification settings - Fork 0
/
math.pde
107 lines (101 loc) · 3.17 KB
/
math.pde
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
class math {
// all math utilities
int[] primes = {2, 3, 5, 7, 11, 13, 17, 19, 23,
29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71, 73, 79, 83, 89, 97, 101, 103, 107, 109,
113, 127, 131, 137, 139, 149, 151, 157, 163, 167,
173, 179, 181, 191, 193, 197, 199, 211, 223, 227,
229, 233, 239, 241, 251, 257, 263, 269, 271, 277,
281, 283, 293, 307, 311, 313, 317, 331, 337, 347,
349, 353, 359, 367, 373, 379, 383, 389, 397, 401,
409, 419, 421, 431, 433, 439, 443, 449, 457, 461,
463, 467, 479, 487, 491, 499, 503, 509, 521, 523,
541, 547, 557, 563, 569, 571, 577, 587, 593, 599,
601, 607, 613, 617, 619, 631, 641, 643, 647, 653,
659, 661, 673, 677, 683, 691, 701, 709, 719, 727,
733, 739, 743, 751, 757, 761, 769, 773, 787, 797,
809, 811, 821, 823, 827, 829, 839, 853, 857, 859,
863, 877, 881, 883, 887, 907, 911, 919, 929, 937,
941, 947, 953, 967, 971, 977, 983, 991, 997};
math() {
/* fraction test
int a = 6 ;
int b = 20;
int c = 4;
int d = 10;
int[] sum = fractionSum(a, b, c, d);
println(a+"/"+b+" + "+c+"/"+d+" = " + sum[0] + "/" + sum[1]);
int[] simplified = fractionSimplify(sum[0], sum[1]);
println("simplified: "+simplified[0]+"/"+simplified[1]);
*/
}
IntList primeDecomposition(int n) {
// returns an IntList of exponents
// decomposition[i] is the exponent of the i-th prime number in the factorization of n
IntList decomposition = new IntList();
for (int i=0; i<primes.length; i++ ) {
decomposition.append(0);
int s = 0;
while (n % primes[i] == 0) {
s++;
decomposition.set(i, s);
n = n/primes[i];
}
if (n == 1) {
i = primes.length;
}
}
return decomposition;
}
int lcm(int a, int b) {
int lcm = 1;
IntList dec_a = primeDecomposition(a);
IntList dec_b = primeDecomposition(b);
int la = dec_a.size();
int lb = dec_b.size();
if (la < lb) {
// a has fewer factors than b
for (int i=0; i<lb-la; i++) {
dec_a.append(0);
}
}
if (la > lb) {
// b has fewer factors than a
for (int i=0; i<la-lb; i++) {
dec_b.append(0);
}
}
for (int k=0; k<dec_a.size(); k++) {
lcm = lcm*int(pow(primes[k], max(dec_a.get(k), dec_b.get(k))));
}
return lcm;
}
int gcd(int a, int b) {
int gcd = 1;
IntList dec_a = primeDecomposition(a);
IntList dec_b = primeDecomposition(b);
int l = min(dec_a.size(), dec_b.size());
for (int i=0; i<l; i++) {
if (dec_a.get(i)*dec_b.get(i) != 0) {
// found a common divisor
gcd = gcd*int(pow(primes[i], min(dec_a.get(i), dec_b.get(i))));
}
}
return gcd;
}
int[] fractionSum(int a, int b, int c, int d) {
// returns the fraction a/b + c/d
int[] sumFraction = new int[2]; // numerator and denominator
int lcm = lcm(b, d);
sumFraction[0] = lcm/b*a + lcm/d*c;
sumFraction[1] = lcm;
return sumFraction;
}
int[] fractionSimplify(int a, int b) {
int[] simplifiedFraction = new int[2];
int gcd = gcd(a, b);
simplifiedFraction[0] = a/gcd;
simplifiedFraction[1] = b/gcd;
return simplifiedFraction;
}
}