This repository was archived by the owner on Mar 6, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathldunit.v
266 lines (228 loc) · 8.51 KB
/
ldunit.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
`timescale 1ps/1ps
// A LD unit
//
// It can do the following operations:
//
// LD, LDR
//
// It is implemented as a state machine for simplicity.
//
// Should work for any memory latency, but is optimized for the long
// 100 cycle latency data port.
//
// It has 3 levels of caches. Each is 4 words and fully associative.
// Evictions from one level go to the next level. Each extra level has
// an extra cycle of latency.
//
// Also there is a prefetcher. It trains on the L3 access stream and inserts
// into a prefetch buffer. When an addr hits in the buffer, it is moved to L1.
//
// Prefetches are triggered by L3 accesses
// Memory access states:
`define W0 0 //idle
`define L1 1 //checking l1
`define L2 2 //checking l2
`define L3 3 //checking l3
`define M0 4 //read from mem
// opcodes
`define LD 4
`define LDR 5
// macros
`define PREF_V(buff_i) pref_buffer[buff_i][33]
`define PREF_A(buff_i) pref_buffer[buff_i][32]
`define PREF_ADDR(buff_i) pref_buffer[buff_i][31:16]
`define PREF_DATA(buff_i) pref_buffer[buff_i][15:0]
`define PREF_IDX(adr) ((`PREF_V(0) && `PREF_ADDR(0) == adr) ? 0 : (`PREF_V(1) && `PREF_ADDR(1) == adr) ? 1 : (`PREF_V(2) && `PREF_ADDR(2) == adr) ? 2 : (`PREF_V(3) && `PREF_ADDR(3) == adr) ? 3 : 4)
`define PREF_HIT(adr) ((`PREF_V(0) && `PREF_ADDR(0) == adr) || (`PREF_V(1) && `PREF_ADDR(1) == adr) || (`PREF_V(2) && `PREF_ADDR(2) == adr) || (`PREF_V(3) && `PREF_ADDR(3) == adr))
module ld(input clk,
// instructions from RSs
input valid, input [5:0]rs_num, input [3:0]op, input [15:0]pc,
input [15:0]val0, input [15:0]val1,
// output result
output valid_out, output [5:0]rs_num_out, output [3:0]op_out, output [15:0]res_out,
// connected to memory
output [15:0]mem_raddr, output mem_re,
input [15:0]mem_addr_out, input [15:0]mem_data_out, input mem_ready,
// busy?
output busy
);
parameter PREF_EN = 1;
parameter DEBUG = 0;
/////////////////// cache and memory access ///////////////////////
// state
reg [2:0]state = `W0;
reg re_in = 0;
reg [15:0]raddr_in;
// L1D
wire l1d_hit;
wire [15:0]l1d_data;
wire [15:0]l1d_evicted_adr;
wire [15:0]l1d_evicted_data;
wire l1d_evicted_valid;
facache #(0) l1d(clk, (op == `LD ? val0 : val0 + val1), valid && state == `W0,
raddr_in, state == `L3 ? `PREF_DATA(`PREF_IDX(raddr_in)) : mem_data_out,
(mem_ready && mem_addr_out == raddr_in) || (state == `L3 && `PREF_HIT(raddr_in) && `PREF_A(`PREF_IDX(raddr_in))),
l1d_data, l1d_hit,
l1d_evicted_adr, l1d_evicted_data, l1d_evicted_valid);
// L2D
wire l2d_hit;
wire [15:0]l2d_data;
wire [15:0]l2d_evicted_adr;
wire [15:0]l2d_evicted_data;
wire l2d_evicted_valid;
facache #(0) l2d(clk, raddr_in, state == `L1,
l1d_evicted_adr, l1d_evicted_data, l1d_evicted_valid,
l2d_data, l2d_hit,
l2d_evicted_adr, l2d_evicted_data, l2d_evicted_valid);
// L3D
wire l3d_hit;
wire [15:0]l3d_data;
wire [15:0]l3d_evicted_adr;
wire [15:0]l3d_evicted_data;
wire l3d_evicted_valid;
facache #(0) l3d(clk, raddr_in, state == `L2,
l2d_evicted_adr, l2d_evicted_data, l2d_evicted_valid,
l3d_data, l3d_hit,
l3d_evicted_adr, l3d_evicted_data, l3d_evicted_valid);
// ISB prefetcher
// It trains on the L3 access stream and prefetches into a prefetch
// buffer of length 4, with round robin replacement.
//
// Prefetches are triggered by L3 access, also.
wire prefetch_re;
wire [15:0]prefetch_addr;
isb #(PREF_EN, 0) isb0(clk,
state == `L2, pc, raddr_in, // train on L3 access stream
state == `L2, raddr_in, // trigger prefetch on L3 access
prefetch_re, prefetch_addr
);
// catch prefetch candidates when mem is busy and submit when you can
reg pref_re_delayed = 0;
reg [15:0]pref_adr_delayed;
always @(posedge clk) begin
if (mem_re_reg && prefetch_re) begin
pref_re_delayed <= 1;
pref_adr_delayed <= prefetch_addr;
end else begin
pref_re_delayed <= 0;
end
end
// Prefetch buffer, checked with the L3
//
// bits | field
// 1 | valid
// 1 | avail (false until memory req fullfilled)
// 16 | addr
// 16 | data
// -----|------
// 34 | total
reg [33:0]pref_buffer[3:0];
reg [1:0]pref_next = 0; // round robin replacement policy
integer pref_update_i;
always @(posedge clk) begin
// place prefetch candidate in prefetch buffer
if (prefetch_re) begin
pref_buffer[pref_next] <= {1'h1, 1'h0, prefetch_addr, 16'hxxxx};
pref_next <= pref_next == 3 ? 0 : pref_next + 1;
if (DEBUG) $display("requested: %X", prefetch_addr);
end
// when the candidate request is ready, put it in the buffer
if (mem_ready) begin
for (pref_update_i = 0; pref_update_i < 4; pref_update_i = pref_update_i + 1) begin
if (`PREF_IDX(mem_addr_out) == pref_update_i) begin
`PREF_A(pref_update_i) <= 1;
`PREF_DATA(pref_update_i) <= mem_data_out;
if (DEBUG) $display("prefetched: %X = %X", mem_addr_out, mem_data_out);
end
end
end
end
// update state
always @(posedge clk) begin
case(state)
`W0 : begin // idle
// waiting for next access
valid_out_reg <= 0;
res_out_reg <= 16'hxxxx;
re_in <= valid;
raddr_in <= op == `LD ? val0 : val0 + val1;
op_out_reg <= op;
rs_num_out_reg <= rs_num;
// if there is an access, check L1
if(valid) begin
state <= `L1;
end
end
`L1 : begin
if (l1d_hit) begin // if hit, return value
valid_out_reg <= 1;
res_out_reg <= l1d_data;
state <= `W0;
end else begin // else, check next level
state <= `L2;
end
end
`L2 : begin // same as above
if (l2d_hit) begin
valid_out_reg <= 1;
res_out_reg <= l2d_data;
state <= `W0;
end else begin
state <= `L3;
end
end
`L3 : begin
if(l3d_hit) begin // if hit, same as above
valid_out_reg <= 1;
res_out_reg <= l3d_data;
state <= `W0;
end else if (`PREF_HIT(raddr_in)) begin
// a prefetch candidate fullfilled the request
if (`PREF_A(`PREF_IDX(raddr_in))) begin
// value already there
valid_out_reg <= 1;
res_out_reg <= `PREF_DATA(`PREF_IDX(raddr_in));
state <= `W0;
end else begin
// wait for request -- partial coverage
state <= `M0;
end
if (DEBUG) $display("prefetch hit: %X", raddr_in);
end else begin // otherwise, submit mem request
mem_re_reg <= 1;
mem_raddr_reg <= raddr_in;
state <= `M0;
end
end
`M0 : begin
// stop submitting request, as per protocol
mem_re_reg <= 0;
mem_raddr_reg <= 16'hxxxx;
// when the value is broadcast on memory bus, return it
if(mem_ready && mem_addr_out == raddr_in) begin
valid_out_reg <= 1;
res_out_reg <= mem_data_out;
state <= `W0;
end
end
default : begin
$display("Unknown state!");
$finish;
end
endcase
end
// output
reg valid_out_reg = 0;
assign valid_out = valid_out_reg;
reg [5:0]rs_num_out_reg;
assign rs_num_out = rs_num_out_reg;
reg [3:0]op_out_reg;
assign op_out = op_out_reg;
reg [15:0]res_out_reg = 16'hxxxx;
assign res_out = res_out_reg;
reg [15:0]mem_raddr_reg = 16'hxxxx;
assign mem_raddr = mem_re_reg ? mem_raddr_reg : !pref_re_delayed ? prefetch_addr : pref_adr_delayed;
reg mem_re_reg = 0;
assign mem_re = mem_re_reg || prefetch_re || pref_re_delayed;
assign busy = valid || re_in;
endmodule