This repo builds up a python package to pull up and backup postgres Database content. It mainly works on energy related data.
When you run the following line:
python main.py
, the expected result is
electricity
0 eg_angle_15min
1 eg_angle_1hr
2 eg_angle_1min
3 eg_angle_1s
4 eg_apparentpower_15min
5 eg_apparentpower_1hr
6 eg_apparentpower_1min
7 eg_apparentpower_1s
8 eg_current_15min
9 eg_current_1hr
10 eg_current_1min
11 eg_current_1s
12 eg_realpower_15min
13 eg_realpower_1hr
14 eg_realpower_1min
15 eg_realpower_1s
16 eg_realpower_1s_40homes_dataset
17 eg_thd_15min
18 eg_thd_1hr
19 eg_thd_1min
20 eg_thd_1s
and a list of anonymized building IDs
[ 26 27 43 59 77 86 93 94 101 114 142 145
153 166 171 183 186 187 252 335 370 379 387 410
483 499 503 516 518 526 545 547 558 621 661 668
690 698 744 781 792 796 821 871 890 914 946 950
974 984 994 1042 1086 1103 1104 1169 1185 1192 1202 1222
1240 1249 1283 1334 1354 1417 1463 1500 1517 1551 1617 1629
1641 1642 1696 1706 1714 1718 1731 1766 1792 1796 1879 1925
1947 1970 2018 2034 2094 2096 2126 2129 2153 2158 2164 2199
2233 2318 2335 2337 2358 2361 2365 2378 2442 2448 2461 2470
2472 2557 2561 2602 2611 2638 2750 2786 2787 2811 2814 2818
2859 2864 2925 2945 2980 3000 3009 3029 3039 3134 3204 3310
3338 3344 3368 3373 3383 3392 3403 3413 3440 3456 3482 3488
3500 3506 3517 3527 3538 3635 3649 3652 3700 3715 3719 3723
3734 3736 3778 3829 3831 3840 3849 3893 3918 3935 3953 3967
3976 3996 4031 4090 4147 4193 4213 4283 4298 4313 4336 4342
4352 4356 4357 4373 4375 4395 4414 4473 4495 4499 4509 4514
4526 4550 4580 4628 4633 4670 4699 4732 4735 4767 4830 4874
4877 4894 4946 4956 4998 5026 5035 5058 5060 5097 5109 5129
5192 5218 5246 5264 5275 5317 5357 5367 5371 5403 5439 5448
5449 5450 5545 5587 5615 5656 5658 5677 5679 5715 5738 5746
5749 5763 5784 5796 5809 5814 5892 5929 5949 5959 5972 5982
5984 5997 6063 6069 6101 6121 6126 6139 6148 6161 6172 6178
6240 6248 6302 6348 6378 6390 6412 6423 6464 6487 6498 6514
6526 6558 6564 6578 6594 6643 6672 6691 6692 6703 6706 6730
6799 6836 6868 6907 6983 6990 7016 7017 7019 7021 7024 7030
7069 7108 7159 7365 7367 7390 7429 7504 7531 7536 7541 7627
7660 7678 7680 7682 7690 7719 7731 7739 7741 7767 7769 7788
7793 7800 7850 7875 7901 7935 7937 7940 7951 7965 7973 7989
7999 8005 8013 8031 8046 8084 8086 8142 8156 8162 8198 8236
8243 8277 8278 8282 8292 8317 8327 8342 8386 8419 8450 8467
8503 8565 8626 8627 8645 8707 8767 8825 8829 8847 8849 8862
8908 8967 8992 8995 9002 9004 9019 9022 9052 9053 9081 9106
9121 9134 9141 9160 9164 9186 9206 9237 9248 9278 9290 9295
9333 9356 9477 9484 9609 9613 9647 9701 9729 9737 9776 9818
9875 9912 9915 9921 9922 9926 9932 9938 9939 9942 9956 9958
9971 9973 9982 9983 10089 10164 10182 10202 10488 10554 10621 10811
10983 11421 11435 11478 11785 11878 11888 11896 11954]
when call metaInfo view window it queries the other_datasets.metadata
26 2018-11-17 11:40:00+00:00 2019-11-10 08:59:00+00:00
27 2019-03-06 13:00:00+00:00 2019-11-10 08:59:00+00:00
43 2019-03-21 11:00:00+00:00 2019-11-10 08:59:00+00:00
59 2013-08-14 00:00:00+00:00 2019-10-31 13:59:00+00:00
77 2014-06-06 05:00:00+00:00 2019-11-10 08:59:00+00:00
86 2013-01-18 00:00:00+00:00 2019-11-10 08:59:00+00:00
93 2012-12-09 00:00:00+00:00 2019-11-10 08:59:00+00:00
94 2012-11-15 00:00:00+00:00 2019-11-10 08:59:00+00:00
101 2014-06-03 05:00:00+00:00 2019-11-10 08:59:00+00:00
114 2013-10-16 00:00:00+00:00 2019-11-10 08:59:00+00:00
142 2019-03-15 00:00:00+00:00 2019-11-10 08:59:00+00:00
145 2019-02-16 00:00:00+00:00 2019-11-10 08:59:00+00:00
153 2019-03-19 00:00:00+00:00 2019-11-10 08:59:00+00:00
166 2019-10-02 00:00:00+00:00 2019-11-10 08:59:00+00:00
171 2012-05-03 00:00:00+00:00 2019-11-10 08:59:00+00:00
183 2019-07-02 00:00:00+00:00 2019-11-10 08:59:00+00:00
186 2018-01-25 16:12:00+00:00 2019-11-10 08:59:00+00:00
187 2012-05-16 00:00:00+00:00 2019-11-10 08:59:00+00:00
252 2012-12-12 00:00:00+00:00 2019-11-10 08:59:00+00:00
335 2019-07-11 00:00:00+00:00 2019-11-10 08:59:00+00:00
Done loading all the buildings!!
When you run the main file with the demo setting, here is the example outcome:
Loading building 26 @ 2019-11-17 13:53:07.803936
Loading table eg_realpower_1hr
2018-11-17 11:40:00+00:00 -> 2018-11-27 11:39:59+00:00: 240 rows
2018-11-27 11:40:00+00:00 -> 2018-12-07 11:39:59+00:00: 240 rows
2018-12-07 11:40:00+00:00 -> 2018-12-17 11:39:59+00:00: 240 rows
2018-12-17 11:40:00+00:00 -> 2018-12-27 11:39:59+00:00: 240 rows
2018-12-27 11:40:00+00:00 -> 2019-01-06 11:39:59+00:00: 240 rows
2019-01-06 11:40:00+00:00 -> 2019-01-16 11:39:59+00:00: 240 rows
2019-01-16 11:40:00+00:00 -> 2019-01-16 23:59:59-06:00: 12 rows
Done converting YAML metadata to HDF5!
- Reference https://github.com/nilmtk/nilmtk