forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinalg_sparse.jl
635 lines (555 loc) · 15.9 KB
/
linalg_sparse.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
## linalg_sparse.jl: Basic Linear Algebra functions for sparse representations ##
require("sparse.jl")
## Matrix multiplication
# In matrix-vector multiplication, the correct orientation of the vector is assumed.
function (*){T1,T2}(A::SparseMatrixCSC{T1}, X::Vector{T2})
if A.n != length(X); error("mismatched dimensions"); end
Y = zeros(promote_type(T1,T2), A.m)
for col = 1 : A.n, k = A.colptr[col] : (A.colptr[col+1]-1)
Y[A.rowval[k]] += A.nzval[k] * X[col]
end
return Y
end
# In vector-matrix multiplication, the correct orientation of the vector is assumed.
# XXX: this is wrong (i.e. not what Arrays would do)!!
function (*){T1,T2}(X::Vector{T1}, A::SparseMatrixCSC{T2})
if A.m != length(X); error("mismatched dimensions"); end
Y = zeros(promote_type(T1,T2), A.n)
for col = 1 : A.n, k = A.colptr[col] : (A.colptr[col+1]-1)
Y[col] += X[A.rowval[k]] * A.nzval[k]
end
return Y
end
function (*){T1,T2}(A::SparseMatrixCSC{T1}, X::Matrix{T2})
mX, nX = size(X)
if A.n != mX; error("mismatched dimensions"); end
Y = zeros(promote_type(T1,T2), A.m, nX)
for multivec_col = 1:nX
for col = 1 : A.n
for k = A.colptr[col] : (A.colptr[col+1]-1)
Y[A.rowval[k], multivec_col] += A.nzval[k] * X[col, multivec_col]
end
end
end
return Y
end
function (*){T1,T2}(X::Matrix{T1}, A::SparseMatrixCSC{T2})
mX, nX = size(X)
if nX != A.m; error("mismatched dimensions"); end
Y = zeros(promote_type(T1,T2), mX, A.n)
for multivec_row = 1:mX
for col = 1 : A.n
for k = A.colptr[col] : (A.colptr[col+1]-1)
Y[multivec_row, col] += X[multivec_row, A.rowval[k]] * A.nzval[k]
end
end
end
return Y
end
# Sparse matrix multiplication as described in [Gustavson, 1978]:
# http://www.cse.iitb.ac.in/graphics/~anand/website/include/papers/matrix/fast_matrix_mul.pdf
function (*){TvA,TiA,TvB,TiB}(A::SparseMatrixCSC{TvA,TiA}, B::SparseMatrixCSC{TvB,TiB})
mA, nA = size(A)
mB, nB = size(B)
if nA != mB; error("mismatched dimensions"); end
Tv = promote_type(TvA, TvB)
Ti = promote_type(TiA, TiB)
colptrA = A.colptr; rowvalA = A.rowval; nzvalA = A.nzval
colptrB = B.colptr; rowvalB = B.rowval; nzvalB = B.nzval
# TODO: Need better estimation of result space
nnzC = min(mA*nB, length(nzvalA) + length(nzvalB))
colptrC = Array(Ti, nB+1)
rowvalC = Array(Ti, nnzC)
nzvalC = Array(Tv, nnzC)
ip = 1
xb = zeros(Ti, mA)
x = zeros(Tv, mA)
for i in 1:nB
if ip + mA - 1 > nnzC
rowvalC = grow(rowvalC, max(nnzC,mA))
nzvalC = grow(nzvalC, max(nnzC,mA))
nnzC = length(nzvalC)
end
colptrC[i] = ip
for jp in colptrB[i]:(colptrB[i+1] - 1)
nzB = nzvalB[jp]
j = rowvalB[jp]
for kp in colptrA[j]:(colptrA[j+1] - 1)
nzC = nzvalA[kp] * nzB
k = rowvalA[kp]
if xb[k] != i
rowvalC[ip] = k
ip += 1
xb[k] = i
x[k] = nzC
else
x[k] += nzC
end
end
end
for vp in colptrC[i]:(ip - 1)
nzvalC[vp] = x[rowvalC[vp]]
end
end
colptrC[nB+1] = ip
rowvalC = del(rowvalC, colptrC[end]:length(rowvalC))
nzvalC = del(nzvalC, colptrC[end]:length(nzvalC))
return SparseMatrixCSC(mA, nB, colptrC, rowvalC, nzvalC)
end
## triu, tril
function triu{Tv,Ti}(S::SparseMatrixCSC{Tv,Ti}, k::Int)
m,n = size(S)
colptr = Array(Ti, n+1)
nnz = 0
for col = 1 : min(max(k+1,1), n+1)
colptr[col] = 1
end
for col = max(k+1,1) : n
for c1 = S.colptr[col] : S.colptr[col+1]-1
if S.rowval[c1] > col - k
break;
end
nnz += 1
end
colptr[col+1] = nnz+1
end
rowval = Array(Ti, nnz)
nzval = Array(Tv, nnz)
A = SparseMatrixCSC{Tv,Ti}(m, n, colptr, rowval, nzval)
for col = max(k+1,1) : n
c1 = S.colptr[col]
for c2 = A.colptr[col] : A.colptr[col+1]-1
A.rowval[c2] = S.rowval[c1]
A.nzval[c2] = S.nzval[c1]
c1 += 1
end
end
return A
end
triu{Tv,Ti}(S::SparseMatrixCSC{Tv,Ti}, k::Integer) = triu(S, int(k))
function tril{Tv,Ti}(S::SparseMatrixCSC{Tv,Ti}, k::Int)
m,n = size(S)
colptr = Array(Ti, n+1)
nnz = 0
colptr[1] = 1
for col = 1 : min(n, m+k)
l1 = S.colptr[col+1]-1
for c1 = 0 : (l1 - S.colptr[col])
if S.rowval[l1 - c1] < col - k
break;
end
nnz += 1
end
colptr[col+1] = nnz+1
end
for col = max(min(n, m+k)+2,1) : n+1
colptr[col] = nnz+1
end
rowval = Array(Ti, nnz)
nzval = Array(Tv, nnz)
A = SparseMatrixCSC{Tv,Ti}(m, n, colptr, rowval, nzval)
for col = 1 : min(n, m+k)
c1 = S.colptr[col+1]-1
l2 = A.colptr[col+1]-1
for c2 = 0 : l2 - A.colptr[col]
A.rowval[l2 - c2] = S.rowval[c1]
A.nzval[l2 - c2] = S.nzval[c1]
c1 -= 1
end
end
return A
end
tril{Tv,Ti}(S::SparseMatrixCSC{Tv,Ti}, k::Integer) = tril(S, int(k))
## diff
function _jl_sparse_diff1{Tv,Ti}(S::SparseMatrixCSC{Tv,Ti})
m,n = size(S)
if m <= 1
return SparseMatrixCSC{Tv,Ti}(0, n, ones(n+1), Ti[], Tv[])
end
colptr = Array(Ti, n+1)
numnz = 2 * nnz(S) # upper bound; will shrink later
rowval = Array(Ti, numnz)
nzval = Array(Tv, numnz)
numnz = 0
colptr[1] = 1
for col = 1 : n
last_row = 0
last_val = 0
for k = S.colptr[col] : S.colptr[col+1]-1
row = S.rowval[k]
val = S.nzval[k]
if row > 1
if row == last_row + 1
nzval[numnz] += val
if nzval[numnz] == zero(Tv)
numnz -= 1
end
else
numnz += 1
rowval[numnz] = row - 1
nzval[numnz] = val
end
end
if row < m
numnz += 1
rowval[numnz] = row
nzval[numnz] = -val
end
last_row = row
last_val = val
end
colptr[col+1] = numnz+1
end
del(rowval, numnz+1:length(rowval))
del(nzval, numnz+1:length(nzval))
return SparseMatrixCSC{Tv,Ti}(m-1, n, colptr, rowval, nzval)
end
function _jl_sparse_diff2{Tv,Ti}(a::SparseMatrixCSC{Tv,Ti})
m,n = size(a)
colptr = Array(Ti, max(n,1))
numnz = 2 * nnz(a) # upper bound; will shrink later
rowval = Array(Ti, numnz)
nzval = Array(Tv, numnz)
z = zero(Tv)
colptr_a = a.colptr
rowval_a = a.rowval
nzval_a = a.nzval
ptrS = 1
colptr[1] = 1
if n == 0
return SparseMatrixCSC{Tv,Ti}(m, n, colptr, rowval, nzval)
end
startA = colptr_a[1]
stopA = colptr_a[2]
rA = startA : stopA - 1
rowvalA = rowval_a[rA]
nzvalA = nzval_a[rA]
lA = stopA - startA
for col = 1:n-1
startB, stopB = startA, stopA
startA = colptr_a[col+1]
stopA = colptr_a[col+2]
rowvalB = rowvalA
nzvalB = nzvalA
lB = lA
rA = startA : stopA - 1
rowvalA = rowval_a[rA]
nzvalA = nzval_a[rA]
lA = stopA - startA
ptrB = 1
ptrA = 1
while ptrA <= lA && ptrB <= lB
rowA = rowvalA[ptrA]
rowB = rowvalB[ptrB]
if rowA < rowB
rowval[ptrS] = rowA
nzval[ptrS] = nzvalA[ptrA]
ptrS += 1
ptrA += 1
elseif rowB < rowA
rowval[ptrS] = rowB
nzval[ptrS] = -nzvalB[ptrB]
ptrS += 1
ptrB += 1
else
res = nzvalA[ptrA] - nzvalB[ptrB]
if res != z
rowval[ptrS] = rowA
nzval[ptrS] = res
ptrS += 1
end
ptrA += 1
ptrB += 1
end
end
while ptrA <= lA
rowval[ptrS] = rowvalA[ptrA]
nzval[ptrS] = nzvalA[ptrA]
ptrS += 1
ptrA += 1
end
while ptrB <= lB
rowval[ptrS] = rowvalB[ptrB]
nzval[ptrS] = -nzvalB[ptrB]
ptrS += 1
ptrB += 1
end
colptr[col+1] = ptrS
end
del(rowval, ptrS:length(rowval))
del(nzval, ptrS:length(nzval))
return SparseMatrixCSC{Tv,Ti}(m, n-1, colptr, rowval, nzval)
end
function diff(a::SparseMatrixCSC, dim::Integer)
if dim == 1
_jl_sparse_diff1(a)
else
_jl_sparse_diff2(a)
end
end
## diag and related
diag(A::SparseMatrixCSC) = [ A[i,i] for i=1:min(size(A)) ]
function diagm{Tv,Ti}(v::SparseMatrixCSC{Tv,Ti})
if (size(v,1) != 1 && size(v,2) != 1)
error("Input should be nx1 or 1xn")
end
n = numel(v)
numnz = nnz(v)
colptr = Array(Ti, n+1)
rowval = Array(Ti, numnz)
nzval = Array(Tv, numnz)
if size(v,1) == 1
copy_to(colptr, 1, v.colptr, 1, n+1)
ptr = 1
for col = 1:n
if colptr[col] != colptr[col+1]
rowval[ptr] = col
nzval[ptr] = v.nzval[ptr]
ptr += 1
end
end
else
copy_to(rowval, 1, v.rowval, 1, numnz)
copy_to(nzval, 1, v.nzval, 1, numnz)
colptr[1] = 1
ptr = 1
col = 1
while col <= n && ptr <= numnz
while rowval[ptr] > col
colptr[col+1] = colptr[col]
col += 1
end
colptr[col+1] = colptr[col] + 1
ptr += 1
col += 1
end
if col <= n
colptr[(col+1):(n+1)] = colptr[col]
end
end
return SparseMatrixCSC{Tv,Ti}(n, n, colptr, rowval, nzval)
end
function spdiagm{T}(v::Union(AbstractVector{T},AbstractMatrix{T}))
if isa(v, AbstractMatrix)
if (size(v,1) != 1 && size(v,2) != 1)
error("Input should be nx1 or 1xn")
end
end
n = numel(v)
numnz = nnz(v)
colptr = Array(Int32, n+1)
rowval = Array(Int32, numnz)
nzval = Array(T, numnz)
colptr[1] = 1
z = zero(T)
ptr = 1
for col=1:n
x = v[col]
if x != z
colptr[col+1] = colptr[col] + 1
rowval[ptr] = col
nzval[ptr] = x
ptr += 1
else
colptr[col+1] = colptr[col]
end
end
return SparseMatrixCSC{T,Int32}(n, n, colptr, rowval, nzval)
end
## norm and rank
# TODO
## trace
function trace{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti})
t = zero(Tv)
for col=1:min(size(A))
first = A.colptr[col]
last = A.colptr[col+1]-1
while first <= last
mid = (first + last) >> 1
row = A.rowval[mid]
if row == col
t += A.nzval[mid]
break
elseif row > col
last = mid - 1
else
first = mid + 1
end
end
end
return t
end
# kron
function kron{TvA,TvB,TiA,TiB}(a::SparseMatrixCSC{TvA,TiA}, b::SparseMatrixCSC{TvB,TiB})
Tv = promote_type(TvA,TvB)
Ti = promote_type(TiA,TiB)
numnzA = nnz(a)
numnzB = nnz(b)
numnz = numnzA * numnzB
mA,nA = size(a)
mB,nB = size(b)
m,n = mA*mB, nA*nB
colptr = Array(Ti, n+1)
rowval = Array(Ti, numnz)
nzval = Array(Tv, numnz)
colptr[1] = 1
colptrA = a.colptr
colptrB = b.colptr
rowvalA = a.rowval
rowvalB = b.rowval
nzvalA = a.nzval
nzvalB = b.nzval
col = 1
for j = 1:nA
startA = colptrA[j]
stopA = colptrA[j+1]-1
lA = stopA - startA + 1
for i = 1:nB
startB = colptrB[i]
stopB = colptrB[i+1]-1
lB = stopB - startB + 1
r = (1:lB) + (colptr[col]-1)
rB = startB:stopB
colptr[col+1] = colptr[col] + lA * lB
col += 1
for ptrA = startA : stopA
rowval[r] = (rowvalA[ptrA]-1)*mB + rowvalB[rB]
nzval[r] = nzvalA[ptrA] * nzvalB[rB]
r += lB
end
end
end
return SparseMatrixCSC{Tv,Ti}(m, n, colptr, rowval, nzval)
end
## det, inv, cond
# TODO
## Structure query functions
function issym(A::SparseMatrixCSC)
m, n = size(A)
if m != n; error("matrix must be square, got $(m)x$(n)"); end
return nnz(A - A.') == 0
end
function ishermitian(A::SparseMatrixCSC)
m, n = size(A)
if m != n; error("matrix must be square, got $(m)x$(n)"); end
return nnz(A - A') == 0
end
function istriu(A::SparseMatrixCSC)
for col = 1:min(A.n,A.m-1)
l1 = A.colptr[col+1]-1
for i = 0 : (l1 - A.colptr[col])
if A.rowval[l1-i] <= col
break
end
if A.nzval[l1-i] != 0
return false
end
end
end
return true
end
function istril(A::SparseMatrixCSC)
for col = 2:A.n
for i = A.colptr[col] : (A.colptr[col+1]-1)
if A.rowval[i] >= col
break
end
if A.nzval[i] != 0
return false
end
end
end
return true
end
## diagmm
# multiply by diagonal matrix as vector
function diagmm!{Tv,Ti}(C::SparseMatrixCSC{Tv,Ti}, A::SparseMatrixCSC, b::Vector)
m, n = size(A)
if n != length(b) || size(A) != size(C)
error("argument dimensions do not match")
end
numnz = nnz(A)
C.colptr = convert(Array{Ti}, A.colptr)
C.rowval = convert(Array{Ti}, A.rowval)
C.nzval = Array(Tv, numnz)
for col = 1:n, p = A.colptr[col]:(A.colptr[col+1]-1)
C.nzval[p] = A.nzval[p] * b[col]
end
return C
end
function diagmm!{Tv,Ti}(C::SparseMatrixCSC{Tv,Ti}, b::Vector, A::SparseMatrixCSC)
m, n = size(A)
if n != length(b) || size(A) != size(C)
error("argument dimensions do not match")
end
numnz = nnz(A)
C.colptr = convert(Array{Ti}, A.colptr)
C.rowval = convert(Array{Ti}, A.rowval)
C.nzval = Array(Tv, numnz)
for col = 1:n, p = A.colptr[col]:(A.colptr[col+1]-1)
C.nzval[p] = A.nzval[p] * b[A.rowval[p]]
end
return C
end
diagmm{Tv,Ti,T}(A::SparseMatrixCSC{Tv,Ti}, b::Vector{T}) =
diagmm!(SparseMatrixCSC(size(A,1),size(A,2),Ti[],Ti[],promote_type(Tv,T)[]), A, b)
diagmm{T,Tv,Ti}(b::Vector{T}, A::SparseMatrixCSC{Tv,Ti}) =
diagmm!(SparseMatrixCSC(size(A,1),size(A,2),Ti[],Ti[],promote_type(Tv,T)[]), b, A)
# Tridiagonal solver
# Allocation-free variants
function solve(x::Array, xstart::Int, xstride::Int, M::Tridiagonal, d::Array, dstart::Int, dstride::Int)
# Grab refs to members (for efficiency)
a = M.a
b = M.b
c = M.c
cp = M.cp
dp = M.dp
N = length(b)
# Forward sweep
cp[1] = c[1] / b[1]
dp[1] = d[dstart] / b[1]
id = dstart+dstride
for i = 2:N
atmp = a[i]
temp = b[i] - atmp*cp[i-1]
cp[i] = c[i] / temp
dp[i] = (d[id] - atmp*dp[i-1])/temp
id += dstride
end
# Backward sweep
ix = xstart + (N-2)*xstride
x[ix+xstride] = dp[N]
for i = N-1:-1:1
x[ix] = dp[i] - cp[i]*x[ix+xstride]
ix -= xstride
end
end
function solve(x::Vector, M::Tridiagonal, d::Vector)
if length(d) != length(M.b)
error("Size mismatch between matrix and rhs")
end
solve(x, 1, 1, M, d, 1, 1)
end
# User-friendly solver
function \(M::Tridiagonal, d::Vector)
x = similar(d)
solve(x, M, d)
return x
end
# Tridiagonal multiplication
function mult(x::Vector, M::Tridiagonal, v::Vector)
a = M.a
b = M.b
c = M.c
N = length(b)
x[1] = b[1]*v[1] + c[1]*v[2]
for i = 2:N-1
x[i] = a[i]*v[i-1] + b[i]*v[i] + c[i]*v[i+1]
end
x[N] = a[N]*v[N-1] + b[N]*v[n]
end
function *(M::Tridiagonal, v::Vector)
x = similar(v)
mult(x, M, v)
return x
end