forked from FluxML/model-zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fizzbuzz.jl
71 lines (54 loc) · 1.56 KB
/
fizzbuzz.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Inspired by "Fizz Buzz in Tensorflow" blog by Joel Grus
# http://joelgrus.com/2016/05/23/fizz-buzz-in-tensorflow/
using Flux
using Flux: onehotbatch, train!, setup, logitcrossentropy
using Test
# Data preparation
function fizzbuzz(x::Int)
is_divisible_by_three = x % 3 == 0
is_divisible_by_five = x % 5 == 0
if is_divisible_by_three & is_divisible_by_five
return "fizzbuzz"
elseif is_divisible_by_three
return "fizz"
elseif is_divisible_by_five
return "buzz"
else
return "else"
end
end
const LABELS = ("fizz", "buzz", "fizzbuzz", "else");
# Feature engineering
features(x) = float.([x % 3, x % 5, x % 15])
features(x::AbstractArray) = reduce(hcat, features.(x))
function getdata()
@test fizzbuzz.((3, 5, 15, 98)) == LABELS
raw_x = 1:100;
raw_y = fizzbuzz.(raw_x);
X = features(raw_x);
y = onehotbatch(raw_y, LABELS);
return X, y
end
function train(; epochs::Int=500, dim::Int=20, eta::Real=0.001)
# Get Data
X, y = getdata()
# Model
m = Chain(Dense(3 => dim, relu), Dense(dim => 4))
loss(m, x, y) = logitcrossentropy(m(x), y)
# Helpers
deepbuzz(x) = (a = argmax(m(features(x))); a == 4 ? x : LABELS[a])
function monitor(e)
print("epoch $(lpad(e, 4)): loss = $(round(loss(m,X,y); digits=4)) | ")
@show deepbuzz.([3, 5, 15, 98])
end
# Training
opt = setup(Adam(eta), m)
for e in 0:epochs
if e % 50 == 0
monitor(e)
end
train!(loss, m, [(X, y)], opt)
end
return m
end
train()