forked from llvm-mirror/llvm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
LangRef.html
4591 lines (3764 loc) · 167 KB
/
LangRef.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title>LLVM Assembly Language Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta name="author" content="Chris Lattner">
<meta name="description"
content="LLVM Assembly Language Reference Manual.">
<link rel="stylesheet" href="llvm.css" type="text/css">
</head>
<body>
<div class="doc_title"> LLVM Language Reference Manual </div>
<ol>
<li><a href="#abstract">Abstract</a></li>
<li><a href="#introduction">Introduction</a></li>
<li><a href="#identifiers">Identifiers</a></li>
<li><a href="#highlevel">High Level Structure</a>
<ol>
<li><a href="#modulestructure">Module Structure</a></li>
<li><a href="#linkage">Linkage Types</a></li>
<li><a href="#callingconv">Calling Conventions</a></li>
<li><a href="#globalvars">Global Variables</a></li>
<li><a href="#functionstructure">Functions</a></li>
<li><a href="#paramattrs">Parameter Attributes</a></li>
<li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
<li><a href="#datalayout">Data Layout</a></li>
</ol>
</li>
<li><a href="#typesystem">Type System</a>
<ol>
<li><a href="#t_primitive">Primitive Types</a>
<ol>
<li><a href="#t_classifications">Type Classifications</a></li>
</ol>
</li>
<li><a href="#t_derived">Derived Types</a>
<ol>
<li><a href="#t_array">Array Type</a></li>
<li><a href="#t_function">Function Type</a></li>
<li><a href="#t_pointer">Pointer Type</a></li>
<li><a href="#t_struct">Structure Type</a></li>
<li><a href="#t_pstruct">Packed Structure Type</a></li>
<li><a href="#t_vector">Vector Type</a></li>
<li><a href="#t_opaque">Opaque Type</a></li>
</ol>
</li>
</ol>
</li>
<li><a href="#constants">Constants</a>
<ol>
<li><a href="#simpleconstants">Simple Constants</a>
<li><a href="#aggregateconstants">Aggregate Constants</a>
<li><a href="#globalconstants">Global Variable and Function Addresses</a>
<li><a href="#undefvalues">Undefined Values</a>
<li><a href="#constantexprs">Constant Expressions</a>
</ol>
</li>
<li><a href="#othervalues">Other Values</a>
<ol>
<li><a href="#inlineasm">Inline Assembler Expressions</a>
</ol>
</li>
<li><a href="#instref">Instruction Reference</a>
<ol>
<li><a href="#terminators">Terminator Instructions</a>
<ol>
<li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
<li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
<li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
<li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
<li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
<li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
</ol>
</li>
<li><a href="#binaryops">Binary Operations</a>
<ol>
<li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
<li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
<li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
<li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
<li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
<li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
<li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
<li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
<li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
</ol>
</li>
<li><a href="#bitwiseops">Bitwise Binary Operations</a>
<ol>
<li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
<li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
<li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
<li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
<li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
<li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
</ol>
</li>
<li><a href="#vectorops">Vector Operations</a>
<ol>
<li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
<li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
<li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
</ol>
</li>
<li><a href="#memoryops">Memory Access and Addressing Operations</a>
<ol>
<li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
<li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
<li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
<li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
<li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
<li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
</ol>
</li>
<li><a href="#convertops">Conversion Operations</a>
<ol>
<li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
<li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
<li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
<li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
<li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
<li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
<li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
<li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
<li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
<li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
<li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
<li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
</ol>
<li><a href="#otherops">Other Operations</a>
<ol>
<li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
<li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
<li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
<li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
<li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
<li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
</ol>
</li>
</ol>
</li>
<li><a href="#intrinsics">Intrinsic Functions</a>
<ol>
<li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
<ol>
<li><a href="#i_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
<li><a href="#i_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
<li><a href="#i_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
</ol>
</li>
<li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
<ol>
<li><a href="#i_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
<li><a href="#i_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
<li><a href="#i_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
</ol>
</li>
<li><a href="#int_codegen">Code Generator Intrinsics</a>
<ol>
<li><a href="#i_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
<li><a href="#i_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
<li><a href="#i_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
<li><a href="#i_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
<li><a href="#i_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
<li><a href="#i_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
<li><a href="#i_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
</ol>
</li>
<li><a href="#int_libc">Standard C Library Intrinsics</a>
<ol>
<li><a href="#i_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
<li><a href="#i_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
<li><a href="#i_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
<li><a href="#i_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
<li><a href="#i_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
</ol>
</li>
<li><a href="#int_manip">Bit Manipulation Intrinsics</a>
<ol>
<li><a href="#i_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
<li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
<li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
<li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
</ol>
</li>
<li><a href="#int_debugger">Debugger intrinsics</a></li>
</ol>
</li>
</ol>
<div class="doc_author">
<p>Written by <a href="mailto:[email protected]">Chris Lattner</a>
and <a href="mailto:[email protected]">Vikram Adve</a></p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section"> <a name="abstract">Abstract </a></div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>This document is a reference manual for the LLVM assembly language.
LLVM is an SSA based representation that provides type safety,
low-level operations, flexibility, and the capability of representing
'all' high-level languages cleanly. It is the common code
representation used throughout all phases of the LLVM compilation
strategy.</p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section"> <a name="introduction">Introduction</a> </div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>The LLVM code representation is designed to be used in three
different forms: as an in-memory compiler IR, as an on-disk bytecode
representation (suitable for fast loading by a Just-In-Time compiler),
and as a human readable assembly language representation. This allows
LLVM to provide a powerful intermediate representation for efficient
compiler transformations and analysis, while providing a natural means
to debug and visualize the transformations. The three different forms
of LLVM are all equivalent. This document describes the human readable
representation and notation.</p>
<p>The LLVM representation aims to be light-weight and low-level
while being expressive, typed, and extensible at the same time. It
aims to be a "universal IR" of sorts, by being at a low enough level
that high-level ideas may be cleanly mapped to it (similar to how
microprocessors are "universal IR's", allowing many source languages to
be mapped to them). By providing type information, LLVM can be used as
the target of optimizations: for example, through pointer analysis, it
can be proven that a C automatic variable is never accessed outside of
the current function... allowing it to be promoted to a simple SSA
value instead of a memory location.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
<div class="doc_text">
<p>It is important to note that this document describes 'well formed'
LLVM assembly language. There is a difference between what the parser
accepts and what is considered 'well formed'. For example, the
following instruction is syntactically okay, but not well formed:</p>
<pre>
%x = <a href="#i_add">add</a> i32 1, %x
</pre>
<p>...because the definition of <tt>%x</tt> does not dominate all of
its uses. The LLVM infrastructure provides a verification pass that may
be used to verify that an LLVM module is well formed. This pass is
automatically run by the parser after parsing input assembly and by
the optimizer before it outputs bytecode. The violations pointed out
by the verifier pass indicate bugs in transformation passes or input to
the parser.</p>
<!-- Describe the typesetting conventions here. --> </div>
<!-- *********************************************************************** -->
<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>LLVM uses three different forms of identifiers, for different
purposes:</p>
<ol>
<li>Named values are represented as a string of characters with a '%' prefix.
For example, %foo, %DivisionByZero, %a.really.long.identifier. The actual
regular expression used is '<tt>%[a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Identifiers which require other characters in their names can be surrounded
with quotes. In this way, anything except a <tt>"</tt> character can be used
in a name.</li>
<li>Unnamed values are represented as an unsigned numeric value with a '%'
prefix. For example, %12, %2, %44.</li>
<li>Constants, which are described in a <a href="#constants">section about
constants</a>, below.</li>
</ol>
<p>LLVM requires that values start with a '%' sign for two reasons: Compilers
don't need to worry about name clashes with reserved words, and the set of
reserved words may be expanded in the future without penalty. Additionally,
unnamed identifiers allow a compiler to quickly come up with a temporary
variable without having to avoid symbol table conflicts.</p>
<p>Reserved words in LLVM are very similar to reserved words in other
languages. There are keywords for different opcodes
('<tt><a href="#i_add">add</a></tt>',
'<tt><a href="#i_bitcast">bitcast</a></tt>',
'<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
and others. These reserved words cannot conflict with variable names, because
none of them start with a '%' character.</p>
<p>Here is an example of LLVM code to multiply the integer variable
'<tt>%X</tt>' by 8:</p>
<p>The easy way:</p>
<pre>
%result = <a href="#i_mul">mul</a> i32 %X, 8
</pre>
<p>After strength reduction:</p>
<pre>
%result = <a href="#i_shl">shl</a> i32 %X, i8 3
</pre>
<p>And the hard way:</p>
<pre>
<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
%result = <a href="#i_add">add</a> i32 %1, %1
</pre>
<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
important lexical features of LLVM:</p>
<ol>
<li>Comments are delimited with a '<tt>;</tt>' and go until the end of
line.</li>
<li>Unnamed temporaries are created when the result of a computation is not
assigned to a named value.</li>
<li>Unnamed temporaries are numbered sequentially</li>
</ol>
<p>...and it also shows a convention that we follow in this document. When
demonstrating instructions, we will follow an instruction with a comment that
defines the type and name of value produced. Comments are shown in italic
text.</p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
<!-- *********************************************************************** -->
<!-- ======================================================================= -->
<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
</div>
<div class="doc_text">
<p>LLVM programs are composed of "Module"s, each of which is a
translation unit of the input programs. Each module consists of
functions, global variables, and symbol table entries. Modules may be
combined together with the LLVM linker, which merges function (and
global variable) definitions, resolves forward declarations, and merges
symbol table entries. Here is an example of the "hello world" module:</p>
<pre><i>; Declare the string constant as a global constant...</i>
<a href="#identifiers">%.LC0</a> = <a href="#linkage_internal">internal</a> <a
href="#globalvars">constant</a> <a href="#t_array">[13 x i8 ]</a> c"hello world\0A\00" <i>; [13 x i8 ]*</i>
<i>; External declaration of the puts function</i>
<a href="#functionstructure">declare</a> i32 %puts(i8 *) <i>; i32(i8 *)* </i>
<i>; Global variable / Function body section separator</i>
implementation
<i>; Definition of main function</i>
define i32 %main() { <i>; i32()* </i>
<i>; Convert [13x i8 ]* to i8 *...</i>
%cast210 = <a
href="#i_getelementptr">getelementptr</a> [13 x i8 ]* %.LC0, i64 0, i64 0 <i>; i8 *</i>
<i>; Call puts function to write out the string to stdout...</i>
<a
href="#i_call">call</a> i32 %puts(i8 * %cast210) <i>; i32</i>
<a
href="#i_ret">ret</a> i32 0<br>}<br></pre>
<p>This example is made up of a <a href="#globalvars">global variable</a>
named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
function, and a <a href="#functionstructure">function definition</a>
for "<tt>main</tt>".</p>
<p>In general, a module is made up of a list of global values,
where both functions and global variables are global values. Global values are
represented by a pointer to a memory location (in this case, a pointer to an
array of char, and a pointer to a function), and have one of the following <a
href="#linkage">linkage types</a>.</p>
<p>Due to a limitation in the current LLVM assembly parser (it is limited by
one-token lookahead), modules are split into two pieces by the "implementation"
keyword. Global variable prototypes and definitions must occur before the
keyword, and function definitions must occur after it. Function prototypes may
occur either before or after it. In the future, the implementation keyword may
become a noop, if the parser gets smarter.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="linkage">Linkage Types</a>
</div>
<div class="doc_text">
<p>
All Global Variables and Functions have one of the following types of linkage:
</p>
<dl>
<dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt>
<dd>Global values with internal linkage are only directly accessible by
objects in the current module. In particular, linking code into a module with
an internal global value may cause the internal to be renamed as necessary to
avoid collisions. Because the symbol is internal to the module, all
references can be updated. This corresponds to the notion of the
'<tt>static</tt>' keyword in C.
</dd>
<dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
<dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
the same name when linkage occurs. This is typically used to implement
inline functions, templates, or other code which must be generated in each
translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
allowed to be discarded.
</dd>
<dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
<dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
except that unreferenced <tt>weak</tt> globals may not be discarded. This is
used for globals that may be emitted in multiple translation units, but that
are not guaranteed to be emitted into every translation unit that uses them.
One example of this are common globals in C, such as "<tt>int X;</tt>" at
global scope.
</dd>
<dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
<dd>"<tt>appending</tt>" linkage may only be applied to global variables of
pointer to array type. When two global variables with appending linkage are
linked together, the two global arrays are appended together. This is the
LLVM, typesafe, equivalent of having the system linker append together
"sections" with identical names when .o files are linked.
</dd>
<dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
<dd>The semantics of this linkage follow the ELF model: the symbol is weak
until linked, if not linked, the symbol becomes null instead of being an
undefined reference.
</dd>
</dl>
<dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
<dd>If none of the above identifiers are used, the global is externally
visible, meaning that it participates in linkage and can be used to resolve
external symbol references.
</dd>
<p>
The next two types of linkage are targeted for Microsoft Windows platform
only. They are designed to support importing (exporting) symbols from (to)
DLLs.
</p>
<dl>
<dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
<dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
or variable via a global pointer to a pointer that is set up by the DLL
exporting the symbol. On Microsoft Windows targets, the pointer name is
formed by combining <code>_imp__</code> and the function or variable name.
</dd>
<dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
<dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
pointer to a pointer in a DLL, so that it can be referenced with the
<tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
name is formed by combining <code>_imp__</code> and the function or variable
name.
</dd>
</dl>
<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
variable and was linked with this one, one of the two would be renamed,
preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
external (i.e., lacking any linkage declarations), they are accessible
outside of the current module.</p>
<p>It is illegal for a function <i>declaration</i>
to have any linkage type other than "externally visible", <tt>dllimport</tt>,
or <tt>extern_weak</tt>.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="callingconv">Calling Conventions</a>
</div>
<div class="doc_text">
<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
and <a href="#i_invoke">invokes</a> can all have an optional calling convention
specified for the call. The calling convention of any pair of dynamic
caller/callee must match, or the behavior of the program is undefined. The
following calling conventions are supported by LLVM, and more may be added in
the future:</p>
<dl>
<dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
<dd>This calling convention (the default if no other calling convention is
specified) matches the target C calling conventions. This calling convention
supports varargs function calls and tolerates some mismatch in the declared
prototype and implemented declaration of the function (as does normal C).
</dd>
<dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
<dd>This calling convention attempts to make calls as fast as possible
(e.g. by passing things in registers). This calling convention allows the
target to use whatever tricks it wants to produce fast code for the target,
without having to conform to an externally specified ABI. Implementations of
this convention should allow arbitrary tail call optimization to be supported.
This calling convention does not support varargs and requires the prototype of
all callees to exactly match the prototype of the function definition.
</dd>
<dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
<dd>This calling convention attempts to make code in the caller as efficient
as possible under the assumption that the call is not commonly executed. As
such, these calls often preserve all registers so that the call does not break
any live ranges in the caller side. This calling convention does not support
varargs and requires the prototype of all callees to exactly match the
prototype of the function definition.
</dd>
<dt><b>"<tt>cc <<em>n</em>></tt>" - Numbered convention</b>:</dt>
<dd>Any calling convention may be specified by number, allowing
target-specific calling conventions to be used. Target specific calling
conventions start at 64.
</dd>
</dl>
<p>More calling conventions can be added/defined on an as-needed basis, to
support pascal conventions or any other well-known target-independent
convention.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="visibility">Visibility Styles</a>
</div>
<div class="doc_text">
<p>
All Global Variables and Functions have one of the following visibility styles:
</p>
<dl>
<dt><b>"<tt>default</tt>" - Default style</b>:</dt>
<dd>On ELF, default visibility means that the declaration is visible to other
modules and, in shared libraries, means that the declared entity may be
overridden. On Darwin, default visibility means that the declaration is
visible to other modules. Default visibility corresponds to "external
linkage" in the language.
</dd>
<dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
<dd>Two declarations of an object with hidden visibility refer to the same
object if they are in the same shared object. Usually, hidden visibility
indicates that the symbol will not be placed into the dynamic symbol table,
so no other module (executable or shared library) can reference it
directly.
</dd>
</dl>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="globalvars">Global Variables</a>
</div>
<div class="doc_text">
<p>Global variables define regions of memory allocated at compilation time
instead of run-time. Global variables may optionally be initialized, may have
an explicit section to be placed in, and may
have an optional explicit alignment specified. A
variable may be defined as a global "constant," which indicates that the
contents of the variable will <b>never</b> be modified (enabling better
optimization, allowing the global data to be placed in the read-only section of
an executable, etc). Note that variables that need runtime initialization
cannot be marked "constant" as there is a store to the variable.</p>
<p>
LLVM explicitly allows <em>declarations</em> of global variables to be marked
constant, even if the final definition of the global is not. This capability
can be used to enable slightly better optimization of the program, but requires
the language definition to guarantee that optimizations based on the
'constantness' are valid for the translation units that do not include the
definition.
</p>
<p>As SSA values, global variables define pointer values that are in
scope (i.e. they dominate) all basic blocks in the program. Global
variables always define a pointer to their "content" type because they
describe a region of memory, and all memory objects in LLVM are
accessed through pointers.</p>
<p>LLVM allows an explicit section to be specified for globals. If the target
supports it, it will emit globals to the section specified.</p>
<p>An explicit alignment may be specified for a global. If not present, or if
the alignment is set to zero, the alignment of the global is set by the target
to whatever it feels convenient. If an explicit alignment is specified, the
global is forced to have at least that much alignment. All alignments must be
a power of 2.</p>
<p>For example, the following defines a global with an initializer, section,
and alignment:</p>
<pre>
%G = constant float 1.0, section "foo", align 4
</pre>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="functionstructure">Functions</a>
</div>
<div class="doc_text">
<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
an optional <a href="#linkage">linkage type</a>, an optional
<a href="#visibility">visibility style</a>, an optional
<a href="#callingconv">calling convention</a>, a return type, an optional
<a href="#paramattrs">parameter attribute</a> for the return type, a function
name, a (possibly empty) argument list (each with optional
<a href="#paramattrs">parameter attributes</a>), an optional section, an
optional alignment, an opening curly brace, a list of basic blocks, and a
closing curly brace.
LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
optional <a href="#linkage">linkage type</a>, an optional
<a href="#visibility">visibility style</a>, an optional
<a href="#callingconv">calling convention</a>, a return type, an optional
<a href="#paramattrs">parameter attribute</a> for the return type, a function
name, a possibly empty list of arguments, and an optional alignment.</p>
<p>A function definition contains a list of basic blocks, forming the CFG for
the function. Each basic block may optionally start with a label (giving the
basic block a symbol table entry), contains a list of instructions, and ends
with a <a href="#terminators">terminator</a> instruction (such as a branch or
function return).</p>
<p>The first basic block in a program is special in two ways: it is immediately
executed on entrance to the function, and it is not allowed to have predecessor
basic blocks (i.e. there can not be any branches to the entry block of a
function). Because the block can have no predecessors, it also cannot have any
<a href="#i_phi">PHI nodes</a>.</p>
<p>LLVM functions are identified by their name and type signature. Hence, two
functions with the same name but different parameter lists or return values are
considered different functions, and LLVM will resolve references to each
appropriately.</p>
<p>LLVM allows an explicit section to be specified for functions. If the target
supports it, it will emit functions to the section specified.</p>
<p>An explicit alignment may be specified for a function. If not present, or if
the alignment is set to zero, the alignment of the function is set by the target
to whatever it feels convenient. If an explicit alignment is specified, the
function is forced to have at least that much alignment. All alignments must be
a power of 2.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
<div class="doc_text">
<p>The return type and each parameter of a function type may have a set of
<i>parameter attributes</i> associated with them. Parameter attributes are
used to communicate additional information about the result or parameters of
a function. Parameter attributes are considered to be part of the function
type so two functions types that differ only by the parameter attributes
are different function types.</p>
<p>Parameter attributes are simple keywords that follow the type specified. If
multiple parameter attributes are needed, they are space separated. For
example:</p><pre>
%someFunc = i16 (i8 sext %someParam) zext
%someFunc = i16 (i8 zext %someParam) zext</pre>
<p>Note that the two function types above are unique because the parameter has
a different attribute (sext in the first one, zext in the second). Also note
that the attribute for the function result (zext) comes immediately after the
argument list.</p>
<p>Currently, only the following parameter attributes are defined:</p>
<dl>
<dt><tt>zext</tt></dt>
<dd>This indicates that the parameter should be zero extended just before
a call to this function.</dd>
<dt><tt>sext</tt></dt>
<dd>This indicates that the parameter should be sign extended just before
a call to this function.</dd>
<dt><tt>inreg</tt></dt>
<dd>This indicates that the parameter should be placed in register (if
possible) during assembling function call. Support for this attribute is
target-specific</dd>
<dt><tt>sret</tt></dt>
<dd>This indicates that the parameter specifies the address of a structure
that is the return value of the function in the source program.
</dd>
</dl>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="moduleasm">Module-Level Inline Assembly</a>
</div>
<div class="doc_text">
<p>
Modules may contain "module-level inline asm" blocks, which corresponds to the
GCC "file scope inline asm" blocks. These blocks are internally concatenated by
LLVM and treated as a single unit, but may be separated in the .ll file if
desired. The syntax is very simple:
</p>
<div class="doc_code"><pre>
module asm "inline asm code goes here"
module asm "more can go here"
</pre></div>
<p>The strings can contain any character by escaping non-printable characters.
The escape sequence used is simply "\xx" where "xx" is the two digit hex code
for the number.
</p>
<p>
The inline asm code is simply printed to the machine code .s file when
assembly code is generated.
</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="datalayout">Data Layout</a>
</div>
<div class="doc_text">
<p>A module may specify a target specific data layout string that specifies how
data is to be laid out in memory. The syntax for the data layout is simply:<br/>
<pre> target datalayout = "<i>layout specification</i>"
</pre>
The <i>layout specification</i> consists of a list of specifications separated
by the minus sign character ('-'). Each specification starts with a letter
and may include other information after the letter to define some aspect of the
data layout. The specifications accepted are as follows: </p>
<dl>
<dt><tt>E</tt></dt>
<dd>Specifies that the target lays out data in big-endian form. That is, the
bits with the most significance have the lowest address location.</dd>
<dt><tt>e</tt></dt>
<dd>Specifies that hte target lays out data in little-endian form. That is,
the bits with the least significance have the lowest address location.</dd>
<dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
<dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
<i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
too.</dd>
<dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
<dd>This specifies the alignment for an integer type of a given bit
<i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
<dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
<dd>This specifies the alignment for a vector type of a given bit
<i>size</i>.</dd>
<dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
<dd>This specifies the alignment for a floating point type of a given bit
<i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
(double).</dd>
<dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
<dd>This specifies the alignment for an aggregate type of a given bit
<i>size</i>.</dd>
</dl>
<p>When constructing the data layout for a given target, LLVM starts with a
default set of specifications which are then (possibly) overriden by the
specifications in the <tt>datalayout</tt> keyword. The default specifications
are given in this list:</p>
<ul>
<li><tt>E</tt> - big endian</li>
<li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
<li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
<li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
<li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
<li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
<li><tt>i64:32:64</tt> - i64 has abi alignment of 32-bits but preferred
alignment of 64-bits</li>
<li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
<li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
<li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
<li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
<li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
</ul>
<p>When llvm is determining the alignment for a given type, it uses the
following rules:
<ol>
<li>If the type sought is an exact match for one of the specifications, that
specification is used.</li>
<li>If no match is found, and the type sought is an integer type, then the
smallest integer type that is larger than the bitwidth of the sought type is
used. If none of the specifications are larger than the bitwidth then the the
largest integer type is used. For example, given the default specifications
above, the i7 type will use the alignment of i8 (next largest) while both
i65 and i256 will use the alignment of i64 (largest specified).</li>
<li>If no match is found, and the type sought is a vector type, then the
largest vector type that is smaller than the sought vector type will be used
as a fall back. This happens because <128 x double> can be implemented in
terms of 64 <2 x double>, for example.</li>
</ol>
</div>
<!-- *********************************************************************** -->
<div class="doc_section"> <a name="typesystem">Type System</a> </div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>The LLVM type system is one of the most important features of the
intermediate representation. Being typed enables a number of
optimizations to be performed on the IR directly, without having to do
extra analyses on the side before the transformation. A strong type
system makes it easier to read the generated code and enables novel
analyses and transformations that are not feasible to perform on normal
three address code representations.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
<div class="doc_text">
<p>The primitive types are the fundamental building blocks of the LLVM
system. The current set of primitive types is as follows:</p>
<table class="layout">
<tr class="layout">
<td class="left">
<table>
<tbody>
<tr><th>Type</th><th>Description</th></tr>
<tr><td><tt>void</tt></td><td>No value</td></tr>
<tr><td><tt>i8</tt></td><td>8-bit value</td></tr>
<tr><td><tt>i32</tt></td><td>32-bit value</td></tr>
<tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
<tr><td><tt>label</tt></td><td>Branch destination</td></tr>
</tbody>
</table>
</td>
<td class="right">
<table>
<tbody>
<tr><th>Type</th><th>Description</th></tr>
<tr><td><tt>i1</tt></td><td>True or False value</td></tr>
<tr><td><tt>i16</tt></td><td>16-bit value</td></tr>
<tr><td><tt>i64</tt></td><td>64-bit value</td></tr>
<tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
</tbody>
</table>
</td>
</tr>
</table>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="t_classifications">Type
Classifications</a> </div>
<div class="doc_text">
<p>These different primitive types fall into a few useful
classifications:</p>
<table border="1" cellspacing="0" cellpadding="4">
<tbody>
<tr><th>Classification</th><th>Types</th></tr>
<tr>
<td><a name="t_integer">integer</a></td>
<td><tt>i1, i8, i16, i32, i64</tt></td>
</tr>
<tr>
<td><a name="t_floating">floating point</a></td>
<td><tt>float, double</tt></td>
</tr>
<tr>
<td><a name="t_firstclass">first class</a></td>
<td><tt>i1, i8, i16, i32, i64, float, double, <br/>
<a href="#t_pointer">pointer</a>,<a href="#t_vector">vector</a></tt>
</td>
</tr>
</tbody>
</table>
<p>The <a href="#t_firstclass">first class</a> types are perhaps the
most important. Values of these types are the only ones which can be
produced by instructions, passed as arguments, or used as operands to
instructions. This means that all structures and arrays must be
manipulated either by pointer or by component.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
<div class="doc_text">
<p>The real power in LLVM comes from the derived types in the system.
This is what allows a programmer to represent arrays, functions,
pointers, and other useful types. Note that these derived types may be
recursive: For example, it is possible to have a two dimensional array.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
<div class="doc_text">
<h5>Overview:</h5>
<p>The array type is a very simple derived type that arranges elements
sequentially in memory. The array type requires a size (number of
elements) and an underlying data type.</p>
<h5>Syntax:</h5>
<pre>
[<# elements> x <elementtype>]
</pre>
<p>The number of elements is a constant integer value; elementtype may
be any type with a size.</p>
<h5>Examples:</h5>
<table class="layout">
<tr class="layout">
<td class="left">
<tt>[40 x i32 ]</tt><br/>
<tt>[41 x i32 ]</tt><br/>
<tt>[40 x i8]</tt><br/>
</td>
<td class="left">
Array of 40 32-bit integer values.<br/>
Array of 41 32-bit integer values.<br/>
Array of 40 8-bit integer values.<br/>
</td>
</tr>
</table>
<p>Here are some examples of multidimensional arrays:</p>
<table class="layout">
<tr class="layout">
<td class="left">
<tt>[3 x [4 x i32]]</tt><br/>
<tt>[12 x [10 x float]]</tt><br/>
<tt>[2 x [3 x [4 x i16]]]</tt><br/>
</td>
<td class="left">
3x4 array of 32-bit integer values.<br/>
12x10 array of single precision floating point values.<br/>
2x3x4 array of 16-bit integer values.<br/>
</td>
</tr>
</table>
<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero