forked from WenmuZhou/OCR_DataSet
-
Notifications
You must be signed in to change notification settings - Fork 2
/
convert_det2lmdb.py
111 lines (95 loc) · 3.56 KB
/
convert_det2lmdb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# -*- coding: utf-8 -*-
# @Time : 2020/4/2 14:19
# @Author : zhoujun
import os
import lmdb
import cv2
import numpy as np
import argparse
import shutil
import sys
from convert.utils import load_gt
def checkImageIsValid(imageBin):
if imageBin is None:
return False
try:
imageBuf = np.fromstring(imageBin, dtype=np.uint8)
img = cv2.imdecode(imageBuf, cv2.IMREAD_GRAYSCALE)
imgH, imgW = img.shape[0], img.shape[1]
except:
return False
else:
if imgH * imgW == 0:
return False
return True
def writeCache(env, cache):
with env.begin(write=True) as txn:
for k, v in cache.items():
if type(k) == str:
k = k.encode()
if type(v) == str:
v = v.encode()
txn.put(k, v)
def createDataset(outputPath, data_dict, map_size=79951162, checkValid=True):
"""
Create LMDB dataset for CRNN training.
ARGS:
outputPath : LMDB output path
data_dict : a dict contains img_path,texts,text_polys
checkValid : if true, check the validity of every image
"""
# If lmdb file already exists, remove it. Or the new data will add to it.
if os.path.exists(outputPath):
shutil.rmtree(outputPath)
os.makedirs(outputPath)
else:
os.makedirs(outputPath)
nSamples = len(data_dict)
env = lmdb.open(outputPath, map_size=map_size)
cache = {}
cnt = 1
for img_path in data_dict:
data = data_dict[img_path]
if not os.path.exists(img_path):
print('%s does not exist' % img_path)
continue
with open(img_path, 'rb') as f:
imageBin = f.read()
if checkValid:
if not checkImageIsValid(imageBin):
print('%s is not a valid image' % img_path)
continue
imageKey = 'image-%09d' % cnt
polygonsKey = 'polygons-%09d' % cnt
textsKey = 'texts-%09d' % cnt
illegibilityKey = 'illegibility-%09d' % cnt
languageKey = 'language-%09d' % cnt
cache[imageKey] = imageBin
cache[polygonsKey] = np.array(data['polygons']).tostring()
cache[textsKey] = '\t'.join(data['texts'])
cache[illegibilityKey] = '\t'.join([str(x) for x in data['illegibility_list']])
cache[languageKey] = '\t'.join(data['language_list'])
if cnt % 1000 == 0:
writeCache(env, cache)
cache = {}
print('Written %d / %d' % (cnt, nSamples))
cnt += 1
nSamples = cnt - 1
cache['num-samples'] = str(nSamples)
writeCache(env, cache)
env.close()
print('Created dataset with %d samples' % nSamples)
def show_demo(demo_number, image_path_list, label_list):
print('\nShow some demo to prevent creating wrong lmdb data')
print('The first line is the path to image and the second line is the image label')
for i in range(demo_number):
print('image: %s\nlabel: %s\n' % (image_path_list[i], label_list[i]))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# parser.add_argument('--out', type = str, required = True, help = 'lmdb data output path')
parser.add_argument('--json_path', type=str, default='E:\\zj\\dataset\\icdar2015 (2)\\detection\\test.json',help='path to gt json')
parser.add_argument('--save_floder', type=str,default=r'E:\zj\dataset\icdar2015 (2)', help='path to save lmdb')
args = parser.parse_args()
data_dict = load_gt(args.json_path)
out_lmdb = os.path.join(args.save_floder,'train')
createDataset(out_lmdb, data_dict, map_size=79951162)