forked from openfheorg/openfhe-development
-
Notifications
You must be signed in to change notification settings - Fork 0
/
threshold-fhe-5p.cpp
330 lines (234 loc) · 13.8 KB
/
threshold-fhe-5p.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
//==================================================================================
// BSD 2-Clause License
//
// Copyright (c) 2014-2022, NJIT, Duality Technologies Inc. and other contributors
//
// All rights reserved.
//
// Author TPOC: [email protected]
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//==================================================================================
/*
Examples of threshold FHE for BGVrns, BFVrns and CKKS
*/
#include "openfhe.h"
using namespace lbcrypto;
void RunBFVrns();
void EvalNoiseBFV(PrivateKey<DCRTPoly> privateKey, ConstCiphertext<DCRTPoly> ciphertext, Plaintext ptxt, usint ptm,
double& noise, double& logQ, EncryptionTechnique encMethod);
int main(int argc, char* argv[]) {
std::cout << "\n=================RUNNING FOR BFVrns=====================" << std::endl;
RunBFVrns();
return 0;
}
void RunBFVrns() {
int plaintextModulus = 65537;
double sigma = 3.2;
lbcrypto::SecurityLevel securityLevel = lbcrypto::SecurityLevel::HEStd_128_classic;
usint batchSize = 16;
usint multDepth = 4;
usint digitSize = 30;
usint dcrtBits = 60;
lbcrypto::CCParams<lbcrypto::CryptoContextBFVRNS> parameters;
parameters.SetPlaintextModulus(plaintextModulus);
parameters.SetSecurityLevel(securityLevel);
parameters.SetStandardDeviation(sigma);
parameters.SetSecretKeyDist(UNIFORM_TERNARY);
parameters.SetMultiplicativeDepth(multDepth);
parameters.SetBatchSize(batchSize);
parameters.SetDigitSize(digitSize);
parameters.SetScalingModSize(dcrtBits);
parameters.SetMultiplicationTechnique(HPSPOVERQLEVELED);
CryptoContext<DCRTPoly> cc = GenCryptoContext(parameters);
// enable features that you wish to use
cc->Enable(PKE);
cc->Enable(KEYSWITCH);
cc->Enable(LEVELEDSHE);
cc->Enable(ADVANCEDSHE);
cc->Enable(MULTIPARTY);
////////////////////////////////////////////////////////////
// Set-up of parameters
////////////////////////////////////////////////////////////
// Output the generated parameters
std::cout << "p = " << cc->GetCryptoParameters()->GetPlaintextModulus() << std::endl;
std::cout << "n = " << cc->GetCryptoParameters()->GetElementParams()->GetCyclotomicOrder() / 2 << std::endl;
std::cout << "log2 q = " << log2(cc->GetCryptoParameters()->GetElementParams()->GetModulus().ConvertToDouble())
<< std::endl;
// Initialize Public Key Containers for two parties A and B
KeyPair<DCRTPoly> kp1;
KeyPair<DCRTPoly> kp2;
KeyPair<DCRTPoly> kpMultiparty;
////////////////////////////////////////////////////////////
// Perform Key Generation Operation
////////////////////////////////////////////////////////////
std::cout << "Running key generation (used for source data)..." << std::endl;
// Round 1 (party A)
std::cout << "Round 1 (party A) started." << std::endl;
kp1 = cc->KeyGen();
kp2 = cc->MultipartyKeyGen(kp1.publicKey);
auto kp3 = cc->MultipartyKeyGen(kp2.publicKey);
auto kp4 = cc->MultipartyKeyGen(kp3.publicKey);
auto kp5 = cc->MultipartyKeyGen(kp4.publicKey);
// Generate evalmult key part for A
auto evalMultKey = cc->KeySwitchGen(kp1.secretKey, kp1.secretKey);
auto evalMultKey2 = cc->MultiKeySwitchGen(kp2.secretKey, kp2.secretKey, evalMultKey);
auto evalMultKey3 = cc->MultiKeySwitchGen(kp3.secretKey, kp3.secretKey, evalMultKey);
auto evalMultKey4 = cc->MultiKeySwitchGen(kp4.secretKey, kp4.secretKey, evalMultKey);
auto evalMultKey5 = cc->MultiKeySwitchGen(kp5.secretKey, kp5.secretKey, evalMultKey);
auto evalMultAB = cc->MultiAddEvalKeys(evalMultKey, evalMultKey2, kp2.publicKey->GetKeyTag());
auto evalMultABC = cc->MultiAddEvalKeys(evalMultAB, evalMultKey3, kp3.publicKey->GetKeyTag());
auto evalMultABCD = cc->MultiAddEvalKeys(evalMultABC, evalMultKey4, kp4.publicKey->GetKeyTag());
auto evalMultABCDE = cc->MultiAddEvalKeys(evalMultABCD, evalMultKey5, kp5.publicKey->GetKeyTag());
auto evalMultEABCDE = cc->MultiMultEvalKey(kp5.secretKey, evalMultABCDE, kp5.publicKey->GetKeyTag());
auto evalMultDABCDE = cc->MultiMultEvalKey(kp4.secretKey, evalMultABCDE, kp5.publicKey->GetKeyTag());
auto evalMultCABCDE = cc->MultiMultEvalKey(kp3.secretKey, evalMultABCDE, kp5.publicKey->GetKeyTag());
auto evalMultBABCDE = cc->MultiMultEvalKey(kp2.secretKey, evalMultABCDE, kp5.publicKey->GetKeyTag());
auto evalMultAABCDE = cc->MultiMultEvalKey(kp1.secretKey, evalMultABCDE, kp5.publicKey->GetKeyTag());
auto evalMultDEABCDE = cc->MultiAddEvalMultKeys(evalMultEABCDE, evalMultDABCDE, evalMultEABCDE->GetKeyTag());
auto evalMultCDEABCDE = cc->MultiAddEvalMultKeys(evalMultCABCDE, evalMultDEABCDE, evalMultCABCDE->GetKeyTag());
auto evalMultBCDEABCDE = cc->MultiAddEvalMultKeys(evalMultBABCDE, evalMultCDEABCDE, evalMultBABCDE->GetKeyTag());
auto evalMultFinal = cc->MultiAddEvalMultKeys(evalMultAABCDE, evalMultBCDEABCDE, kp5.publicKey->GetKeyTag());
cc->InsertEvalMultKey({evalMultFinal});
//---------------------------------------------------
std::cout << "Running evalsum key generation (used for source data)..." << std::endl;
// Generate evalsum key part for A
cc->EvalSumKeyGen(kp1.secretKey);
auto evalSumKeys =
std::make_shared<std::map<usint, EvalKey<DCRTPoly>>>(cc->GetEvalSumKeyMap(kp1.secretKey->GetKeyTag()));
auto evalSumKeysB = cc->MultiEvalSumKeyGen(kp2.secretKey, evalSumKeys, kp2.publicKey->GetKeyTag());
auto evalSumKeysC = cc->MultiEvalSumKeyGen(kp3.secretKey, evalSumKeys, kp3.publicKey->GetKeyTag());
auto evalSumKeysD = cc->MultiEvalSumKeyGen(kp4.secretKey, evalSumKeys, kp4.publicKey->GetKeyTag());
auto evalSumKeysE = cc->MultiEvalSumKeyGen(kp5.secretKey, evalSumKeys, kp5.publicKey->GetKeyTag());
auto evalSumKeysAB = cc->MultiAddEvalSumKeys(evalSumKeys, evalSumKeysB, kp2.publicKey->GetKeyTag());
auto evalSumKeysABC = cc->MultiAddEvalSumKeys(evalSumKeysC, evalSumKeysAB, kp3.publicKey->GetKeyTag());
auto evalSumKeysABCD = cc->MultiAddEvalSumKeys(evalSumKeysABC, evalSumKeysD, kp4.publicKey->GetKeyTag());
auto evalSumKeysJoin = cc->MultiAddEvalSumKeys(evalSumKeysE, evalSumKeysABCD, kp5.publicKey->GetKeyTag());
cc->InsertEvalSumKey(evalSumKeysJoin);
////////////////////////////////////////////////////////////
// Encode source data
////////////////////////////////////////////////////////////
std::vector<int64_t> vectorOfInts1 = {1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0};
std::vector<int64_t> vectorOfInts2 = {1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0};
std::vector<int64_t> vectorOfInts3 = {2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 0};
Plaintext plaintext1 = cc->MakePackedPlaintext(vectorOfInts1);
Plaintext plaintext2 = cc->MakePackedPlaintext(vectorOfInts2);
Plaintext plaintext3 = cc->MakePackedPlaintext(vectorOfInts3);
////////////////////////////////////////////////////////////
// Encryption
////////////////////////////////////////////////////////////
Ciphertext<DCRTPoly> ciphertext1;
Ciphertext<DCRTPoly> ciphertext2;
Ciphertext<DCRTPoly> ciphertext3;
ciphertext1 = cc->Encrypt(kp5.publicKey, plaintext1);
ciphertext2 = cc->Encrypt(kp5.publicKey, plaintext2);
ciphertext3 = cc->Encrypt(kp5.publicKey, plaintext3);
////////////////////////////////////////////////////////////
// Homomorphic Operations
////////////////////////////////////////////////////////////
Ciphertext<DCRTPoly> ciphertextAdd12;
Ciphertext<DCRTPoly> ciphertextAdd123;
ciphertextAdd12 = cc->EvalAdd(ciphertext1, ciphertext2);
ciphertextAdd123 = cc->EvalAdd(ciphertextAdd12, ciphertext3);
auto ciphertextMult1 = cc->EvalMult(ciphertext1, ciphertext1);
auto ciphertextMult2 = cc->EvalMult(ciphertextMult1, ciphertext1);
auto ciphertextMult3 = cc->EvalMult(ciphertextMult2, ciphertext1);
auto ciphertextMult = cc->EvalMult(ciphertextMult3, ciphertext1);
auto ciphertextEvalSum = cc->EvalSum(ciphertext3, batchSize);
////////////////////////////////////////////////////////////
// Decryption after Accumulation Operation on Encrypted Data with Multiparty
////////////////////////////////////////////////////////////
Plaintext plaintextAddNew1;
Plaintext plaintextAddNew2;
Plaintext plaintextAddNew3;
DCRTPoly partialPlaintext1;
DCRTPoly partialPlaintext2;
DCRTPoly partialPlaintext3;
Plaintext plaintextMultipartyNew;
const std::shared_ptr<CryptoParametersBase<DCRTPoly>> cryptoParams = kp1.secretKey->GetCryptoParameters();
const std::shared_ptr<typename DCRTPoly::Params> elementParams = cryptoParams->GetElementParams();
// Distributed decryption
// partial decryption by party A
auto ciphertextPartial1 = cc->MultipartyDecryptLead({ciphertextAdd123}, kp1.secretKey);
// partial decryption by party B
auto ciphertextPartial2 = cc->MultipartyDecryptMain({ciphertextAdd123}, kp2.secretKey);
// partial decryption by party C
auto ciphertextPartial3 = cc->MultipartyDecryptMain({ciphertextAdd123}, kp3.secretKey);
// partial decryption by party D
auto ciphertextPartial4 = cc->MultipartyDecryptMain({ciphertextAdd123}, kp4.secretKey);
// partial decryption by party E
auto ciphertextPartial5 = cc->MultipartyDecryptMain({ciphertextAdd123}, kp5.secretKey);
std::vector<Ciphertext<DCRTPoly>> partialCiphertextVec;
partialCiphertextVec.push_back(ciphertextPartial1[0]);
partialCiphertextVec.push_back(ciphertextPartial2[0]);
partialCiphertextVec.push_back(ciphertextPartial3[0]);
partialCiphertextVec.push_back(ciphertextPartial4[0]);
partialCiphertextVec.push_back(ciphertextPartial5[0]);
// Two partial decryptions are combined
cc->MultipartyDecryptFusion(partialCiphertextVec, &plaintextMultipartyNew);
std::cout << "\n Original Plaintext: \n" << std::endl;
std::cout << plaintext1 << std::endl;
std::cout << plaintext2 << std::endl;
std::cout << plaintext3 << std::endl;
plaintextMultipartyNew->SetLength(plaintext1->GetLength());
std::cout << "\n Resulting Fused Plaintext: \n" << std::endl;
std::cout << plaintextMultipartyNew << std::endl;
std::cout << "\n";
Plaintext plaintextMultipartyMult;
ciphertextPartial1 = cc->MultipartyDecryptLead({ciphertextMult}, kp1.secretKey);
ciphertextPartial2 = cc->MultipartyDecryptMain({ciphertextMult}, kp2.secretKey);
// partial decryption by party C
ciphertextPartial3 = cc->MultipartyDecryptMain({ciphertextMult}, kp3.secretKey);
// partial decryption by party D
ciphertextPartial4 = cc->MultipartyDecryptMain({ciphertextMult}, kp4.secretKey);
// partial decryption by party E
ciphertextPartial5 = cc->MultipartyDecryptMain({ciphertextMult}, kp5.secretKey);
std::vector<Ciphertext<DCRTPoly>> partialCiphertextVecMult;
partialCiphertextVecMult.push_back(ciphertextPartial1[0]);
partialCiphertextVecMult.push_back(ciphertextPartial2[0]);
partialCiphertextVecMult.push_back(ciphertextPartial3[0]);
partialCiphertextVecMult.push_back(ciphertextPartial4[0]);
partialCiphertextVecMult.push_back(ciphertextPartial5[0]);
cc->MultipartyDecryptFusion(partialCiphertextVecMult, &plaintextMultipartyMult);
plaintextMultipartyMult->SetLength(plaintext1->GetLength());
std::cout << "\n Resulting Fused Plaintext after Multiplication of plaintexts 1 "
"and 3: \n"
<< std::endl;
std::cout << plaintextMultipartyMult << std::endl;
std::cout << "\n";
Plaintext plaintextMultipartyEvalSum;
ciphertextPartial1 = cc->MultipartyDecryptLead({ciphertextEvalSum}, kp1.secretKey);
ciphertextPartial2 = cc->MultipartyDecryptMain({ciphertextEvalSum}, kp2.secretKey);
ciphertextPartial3 = cc->MultipartyDecryptMain({ciphertextEvalSum}, kp3.secretKey);
ciphertextPartial4 = cc->MultipartyDecryptMain({ciphertextEvalSum}, kp4.secretKey);
ciphertextPartial5 = cc->MultipartyDecryptMain({ciphertextEvalSum}, kp5.secretKey);
std::vector<Ciphertext<DCRTPoly>> partialCiphertextVecEvalSum;
partialCiphertextVecEvalSum.push_back(ciphertextPartial1[0]);
partialCiphertextVecEvalSum.push_back(ciphertextPartial2[0]);
partialCiphertextVecEvalSum.push_back(ciphertextPartial3[0]);
partialCiphertextVecEvalSum.push_back(ciphertextPartial4[0]);
partialCiphertextVecEvalSum.push_back(ciphertextPartial5[0]);
cc->MultipartyDecryptFusion(partialCiphertextVecEvalSum, &plaintextMultipartyEvalSum);
plaintextMultipartyEvalSum->SetLength(plaintext1->GetLength());
std::cout << "\n Fused result after summation of ciphertext 3: \n" << std::endl;
std::cout << plaintextMultipartyEvalSum << std::endl;
}