forked from pkorus/neural-imaging
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_dcn.py
executable file
·215 lines (163 loc) · 8.65 KB
/
test_dcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import sys
import argparse
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import numpy as np
import matplotlib.pyplot as plt
from skimage.measure import compare_ssim
from helpers import plotting, dataset, coreutils, loading, utils
from compression import jpeg_helpers, codec, ratedistortion
supported_plots = ['batch', 'jpeg-match-ssim', 'jpeg-match-bpp', 'jpg-trade-off', 'jp2-trade-off', 'dcn-trade-off', 'bpg-trade-off']
def match_jpeg(model, batch_x, axes=None, match='ssim'):
# Compress using DCN and get number of bytes
batch_y, bytes_dcn = codec.simulate_compression(batch_x, model)
ssim_dcn = compare_ssim(batch_x.squeeze(), batch_y.squeeze(), multichannel=True, data_range=1)
bpp_dcn = 8 * bytes_dcn / np.prod(batch_x.shape[1:-1])
target = ssim_dcn if match == 'ssim' else bpp_dcn
try:
jpeg_quality = jpeg_helpers.match_quality(batch_x.squeeze(), target, match=match)
except:
if match == 'ssim':
jpeg_quality = 95 if ssim_dcn > 0.8 else 10
else:
jpeg_quality = 95 if bpp_dcn > 3 else 10
print('WARNING Could not find a matching JPEG quality factor - guessing {}'.format(jpeg_quality))
# Compress using JPEG
batch_j, bytes_jpeg = jpeg_helpers.compress_batch(batch_x[0], jpeg_quality, effective=True)
ssim_jpeg = compare_ssim(batch_x.squeeze(), batch_j.squeeze(), multichannel=True, data_range=1)
bpp_jpg = 8 * bytes_jpeg / np.prod(batch_x.shape[1:-1])
# Get stats
code_book = model.get_codebook()
batch_z = model.compress(batch_x)
counts = utils.qhist(batch_z, code_book)
counts = counts.clip(min=1)
probs = counts / counts.sum()
entropy = - np.sum(probs * np.log2(probs))
# Print report
print('DCN : {}'.format(model.model_code))
print('Pixels : {}x{} = {:,} px'.format(batch_x.shape[1], batch_x.shape[2], np.prod(batch_x.shape[1:-1])))
print('Bitmap : {:,} bytes'.format(np.prod(batch_x.shape)))
print('Code-book size : {} elements from {} to {}'.format(len(code_book), min(code_book), max(code_book)))
print('Entropy : {:.2f} bits per symbol'.format(entropy))
print('Latent size : {:,}'.format(np.prod(batch_z.shape)))
print('PPF Naive : {:,.0f} --> {:,.0f} bytes [{} bits per element]'.format(
np.prod(batch_z.shape) * np.log2(len(code_book)) / 8,
np.prod(batch_z.shape) * np.ceil(np.log2(len(code_book))) / 8,
np.ceil(np.log2(len(code_book)))
))
print('PPF Theoretical : {:,.0f} bytes ({:.2f} bpp)'.format(
np.prod(batch_z.shape) * entropy / 8,
np.prod(batch_z.shape) * entropy / np.prod(batch_x.shape[1:-1])))
print('FSE Coded : {:,} bytes ({:.2f} bpp) --> ssim: {:.3f}'.format(bytes_dcn, bpp_dcn, ssim_dcn))
print('JPEG (Q={:2d}) : {:,} bytes ({:0.2f} bpp) --> ssim: {:.3f} // effective size disregarding JPEG headers'.format(jpeg_quality, bytes_jpeg, bpp_jpg, ssim_jpeg))
# Plot results
if axes is None:
fig, axes = plotting.sub(6, ncols=3)
fig.set_size_inches(12, 10)
fig.tight_layout()
else:
fig = axes[0].figure
# Plot full-resolution
plotting.quickshow(batch_x, 'Original ({0}x{0})'.format(batch_x.shape[1]), axes=axes[0])
plotting.quickshow(batch_y, 'DCN ssim:{:.2f} bpp:{:.2f}'.format(ssim_dcn, bpp_dcn), axes=axes[1])
plotting.quickshow(batch_j, 'JPEG {} ssim:{:.2f} bpp:{:.2f}'.format(jpeg_quality, ssim_jpeg, bpp_jpg), axes=axes[2])
# Plot zoom
crop_size = max([64, batch_x.shape[1] // 4])
plotting.quickshow(utils.crop_middle(batch_x, crop_size), 'Original crop ({0}x{0})'.format(crop_size), axes=axes[3])
plotting.quickshow(utils.crop_middle(batch_y, crop_size), 'DCN crop ({0}x{0})'.format(crop_size), axes=axes[4])
plotting.quickshow(utils.crop_middle(batch_j, crop_size), 'JPEG crop ({0}x{0})'.format(crop_size), axes=axes[5])
return fig
def show_example(model, batch_x):
# Compress and decompress model
batch_z = model.compress(batch_x)
batch_y = model.decompress(batch_z)
# Get empirical histogram of the latent representation
codebook = model.get_codebook()
qmin = np.floor(codebook[0])
qmax = np.ceil(codebook[-1])
bin_centers = np.arange(qmin - 1, qmax + 1, 0.1)
bin_boundaries = np.convolve(bin_centers, [0.5, 0.5], mode='valid')
bin_centers = bin_centers[1:-1]
hist_emp = np.histogram(batch_z.reshape((-1,)), bins=bin_boundaries, density=True)[0]
hist_emp = np.maximum(hist_emp, 1e-9)
hist_emp = hist_emp / hist_emp.sum()
# Get TF histogram estimate based on soft quantization
hist = model.get_tf_histogram(batch_x)
# Entropy
entropy = - np.sum(hist * np.log2(hist))
entropy_emp = - np.sum(hist_emp * np.log2(hist_emp))
fig, axes = plotting.sub(2, ncols=1)
fig.set_size_inches(12, 10)
axes[0].plot(bin_centers, hist_emp / hist_emp.max(), 'r-')
axes[0].plot(codebook, hist / hist.max(), '-bo')
axes[0].legend(['Empirical H={:.2f}'.format(entropy_emp), 'TF estimate (soft) H={:.2f}'.format(entropy)])
axes[0].set_ylabel('normalized frequency')
axes[0].set_xlabel('latent values')
# Thumbnails
indices = np.argsort(np.var(batch_x, axis=(1, 2, 3)))[::-1]
thumbs_pairs_few = np.concatenate((batch_x[indices], batch_y[indices]), axis=0)
thumbs_few = (255 * plotting.thumbnails(thumbs_pairs_few, n_cols=len(batch_x))).astype(np.uint8)
ssim_values = [compare_ssim(batch_x[i], batch_y[i], multichannel=True) for i in range(len(batch_x))]
plotting.quickshow(thumbs_few, 'Sample reconstructions, ssim={:.3f}'.format(np.mean(ssim_values)), axes=axes[1])
fig.tight_layout()
return fig
def main():
parser = argparse.ArgumentParser(description='Test a neural imaging pipeline')
parser.add_argument('plot', help='Plot type ({})'.format(', '.join(supported_plots)))
parser.add_argument('--data', dest='data', action='store', default='./data/rgb/clic256/',
help='directory with training & validation images (png)')
parser.add_argument('--images', dest='images', action='store', default=10, type=int,
help='number of images to test')
parser.add_argument('--image', dest='image_id', action='store', default=1, type=int,
help='ID of the image to load')
parser.add_argument('--patch', dest='patch_size', action='store', default=128, type=int,
help='training patch size')
parser.add_argument('--dcn', dest='dcn', action='store',
help='directory with a trained DCN model')
args = parser.parse_args()
# Match the current
args.plot = coreutils.match_option(args.plot, supported_plots)
if args.plot == 'batch':
model, stats = codec.restore_model(args.dcn, args.patch_size, fetch_stats=True)
print('Training stats:', stats)
data = dataset.IPDataset(args.data, load='y', n_images=0, v_images=args.images, val_rgb_patch_size=args.patch_size)
batch_x = data.next_validation_batch(0, args.images)
fig = show_example(model, batch_x)
plt.show()
plt.close()
elif args.plot == 'jpeg-match-ssim':
files, _ = loading.discover_files(args.data, n_images=-1, v_images=0)
files = files[args.image_id:args.image_id+1]
batch_x = loading.load_images(files, args.data, load='y')
batch_x = batch_x['y'].astype(np.float32) / (2**8 - 1)
model = codec.restore_model(args.dcn, batch_x.shape[1])
fig = match_jpeg(model, batch_x, match='ssim')
plt.show()
plt.close()
elif args.plot == 'jpeg-match-bpp':
files, _ = loading.discover_files(args.data, n_images=-1, v_images=0)
files = files[args.image_id:args.image_id+1]
batch_x = loading.load_images(files, args.data, load='y')
batch_x = batch_x['y'].astype(np.float32) / (2**8 - 1)
model = codec.restore_model(args.dcn, batch_x.shape[1])
fig = match_jpeg(model, batch_x, match='bpp')
plt.show()
plt.close()
elif args.plot == 'jpg-trade-off':
df = ratedistortion.get_jpeg_df(args.data, write_files=True)
print(df.to_string())
elif args.plot == 'jp2-trade-off':
df = ratedistortion.get_jpeg2k_df(args.data, write_files=True)
print(df.to_string())
elif args.plot == 'dcn-trade-off':
df = ratedistortion.get_dcn_df(args.data, args.dcn, write_files=False)
print(df.to_string())
elif args.plot == 'bpg-trade-off':
df = ratedistortion.get_bpg_df(args.data, write_files=False)
print(df.to_string())
else:
print('Error: Unknown plot!')
if __name__ == "__main__":
main()