Skip to content

Commit b8565b2

Browse files
committed
Formatting for LaTeX/PDF export
1 parent cfd49a0 commit b8565b2

8 files changed

+21
-21
lines changed

random_signals/correlation_functions.ipynb

+2-2
Original file line numberDiff line numberDiff line change
@@ -281,7 +281,7 @@
281281
"cell_type": "markdown",
282282
"metadata": {},
283283
"source": [
284-
"** Copyright **\n",
284+
"**Copyright**\n",
285285
"\n",
286286
"<p xmlns:dct=\"http://purl.org/dc/terms/\">\n",
287287
" <a rel=\"license\"\n",
@@ -313,7 +313,7 @@
313313
"name": "python",
314314
"nbconvert_exporter": "python",
315315
"pygments_lexer": "ipython3",
316-
"version": "3.4.3"
316+
"version": "3.5.0"
317317
}
318318
},
319319
"nbformat": 4,

random_signals/distributions.ipynb

+4-4
Original file line numberDiff line numberDiff line change
@@ -114,11 +114,11 @@
114114
"\n",
115115
"and\n",
116116
"\n",
117-
"$$\\int_{-\\infty}^{\\infty} p_x(\\theta, k) \\, \\mathrm{d}\\theta = P_x(\\infty, k) = 1$$\n",
117+
"$$\\int\\limits_{-\\infty}^{\\infty} p_x(\\theta, k) \\, \\mathrm{d}\\theta = P_x(\\infty, k) = 1$$\n",
118118
"\n",
119119
"The CDF can be derived from the PDF by integration\n",
120120
"\n",
121-
"$$P_x(\\theta, k) = \\int_{-\\infty}^{\\theta} p_x(\\theta, k) \\, \\mathrm{d}\\theta$$"
121+
"$$P_x(\\theta, k) = \\int\\limits_{-\\infty}^{\\theta} p_x(\\theta, k) \\, \\mathrm{d}\\theta$$"
122122
]
123123
},
124124
{
@@ -241,7 +241,7 @@
241241
"cell_type": "markdown",
242242
"metadata": {},
243243
"source": [
244-
"** Copyright **\n",
244+
"**Copyright**\n",
245245
"\n",
246246
"<p xmlns:dct=\"http://purl.org/dc/terms/\">\n",
247247
" <a rel=\"license\"\n",
@@ -273,7 +273,7 @@
273273
"name": "python",
274274
"nbconvert_exporter": "python",
275275
"pygments_lexer": "ipython3",
276-
"version": "3.4.3"
276+
"version": "3.5.0"
277277
}
278278
},
279279
"nbformat": 4,

random_signals/ensemble_averages.ipynb

+3-3
Original file line numberDiff line numberDiff line change
@@ -98,7 +98,7 @@
9898
"\n",
9999
"$$ \\mu_x[k] = E\\{ x[k] \\} = \\int\\limits_{-\\infty}^{\\infty} \\theta \\, p_x(\\theta, k) \\, \\mathrm{d}\\theta $$\n",
100100
"\n",
101-
"where $\\mu_x[k]$ is a common abbreviation of the linear mean. A process is termed *mean free* if $\\mu_x[k] = 0$."
101+
"where $\\mu_x[k]$ is a common abbreviation of the linear mean. A process is termed *mean free* if $\\mu_x[k] = 0$.Note that $\\mu_x$ should not be confused with the frequency index variable of the DFT."
102102
]
103103
},
104104
{
@@ -337,7 +337,7 @@
337337
"cell_type": "markdown",
338338
"metadata": {},
339339
"source": [
340-
"** Copyright **\n",
340+
"**Copyright**\n",
341341
"\n",
342342
"<p xmlns:dct=\"http://purl.org/dc/terms/\">\n",
343343
" <a rel=\"license\"\n",
@@ -369,7 +369,7 @@
369369
"name": "python",
370370
"nbconvert_exporter": "python",
371371
"pygments_lexer": "ipython3",
372-
"version": "3.4.3"
372+
"version": "3.5.0"
373373
}
374374
},
375375
"nbformat": 4,

random_signals/important_distributions.ipynb

+3-3
Original file line numberDiff line numberDiff line change
@@ -230,7 +230,7 @@
230230
"where $\\mu_x$ and $\\sigma_x^2$ denote the linear mean and variance, respectively. Normal distributions are often used to represent random variables whose distributions are not known. The central limit theorem states that averages of random variables independently drawn from independent distributions become normally distributed when the number of random variables is sufficiently large. As a result, random signals that are expected to be the sum of many independent processes often have distributions that are nearly normal. The CDF can be derived by integration over $\\theta$\n",
231231
"\n",
232232
"\\begin{align}\n",
233-
"P_x(\\theta) &= \\frac{1}{\\sqrt{2 \\pi} \\sigma_x} \\int_{—\\infty}^{\\theta} \\mathrm{e}^{- \\frac{\\zeta - \\mu_x}{2 \\sigma_x^2}} \\mathrm{d}\\zeta \\\\\n",
233+
"P_x(\\theta) &= \\frac{1}{\\sqrt{2 \\pi} \\sigma_x} \\int\\limits_{—\\infty}^{\\theta} \\mathrm{e}^{- \\frac{\\zeta - \\mu_x}{2 \\sigma_x^2}} \\mathrm{d}\\zeta \\\\\n",
234234
"&= \\frac{1}{2} \\left( 1 + \\text{erf}\\left( \\frac{\\theta-\\mu_x}{\\sqrt{2} \\sigma_x} \\right)\\right)\n",
235235
"\\end{align}\n",
236236
"\n",
@@ -495,7 +495,7 @@
495495
"cell_type": "markdown",
496496
"metadata": {},
497497
"source": [
498-
"** Copyright **\n",
498+
"**Copyright**\n",
499499
"\n",
500500
"<p xmlns:dct=\"http://purl.org/dc/terms/\">\n",
501501
" <a rel=\"license\"\n",
@@ -527,7 +527,7 @@
527527
"name": "python",
528528
"nbconvert_exporter": "python",
529529
"pygments_lexer": "ipython3",
530-
"version": "3.4.3"
530+
"version": "3.5.0"
531531
}
532532
},
533533
"nbformat": 4,

random_signals/introduction.ipynb

+2-2
Original file line numberDiff line numberDiff line change
@@ -201,7 +201,7 @@
201201
"cell_type": "markdown",
202202
"metadata": {},
203203
"source": [
204-
"** Copyright **"
204+
"**Copyright**"
205205
]
206206
},
207207
{
@@ -238,7 +238,7 @@
238238
"name": "python",
239239
"nbconvert_exporter": "python",
240240
"pygments_lexer": "ipython3",
241-
"version": "3.4.3"
241+
"version": "3.5.0"
242242
}
243243
},
244244
"nbformat": 4,

random_signals/power_spectral_densities.ipynb

+3-3
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,7 @@
4545
"\n",
4646
"2. The quadratic mean of a random signal is given as\n",
4747
"\n",
48-
" $$ E\\{ x[k]^2 \\} = \\varphi_{xx}[0] = \\frac{1}{2\\pi} \\int\\limits_{-\\pi}^{\\pi} \\Phi_{xx}(\\mathrm{e}^{\\,\\mathrm{j}\\, \\Omega}) \\mathrm{d} \\Omega $$\n",
48+
" $$ E\\{ x[k]^2 \\} = \\varphi_{xx}[0] = \\frac{1}{2\\pi} \\int\\limits_{-\\pi}^{\\pi} \\Phi_{xx}(\\mathrm{e}^{\\,\\mathrm{j}\\, \\Omega}) \\,\\mathrm{d} \\Omega $$\n",
4949
"\n",
5050
" The last relation can be found by introducing the definition of the inverse DTFT."
5151
]
@@ -132,7 +132,7 @@
132132
"cell_type": "markdown",
133133
"metadata": {},
134134
"source": [
135-
"** Copyright **\n",
135+
"**Copyright**\n",
136136
"\n",
137137
"<p xmlns:dct=\"http://purl.org/dc/terms/\">\n",
138138
" <a rel=\"license\"\n",
@@ -164,7 +164,7 @@
164164
"name": "python",
165165
"nbconvert_exporter": "python",
166166
"pygments_lexer": "ipython3",
167-
"version": "3.4.3"
167+
"version": "3.5.0"
168168
}
169169
},
170170
"nbformat": 4,

random_signals/stationary_ergodic.ipynb

+2-2
Original file line numberDiff line numberDiff line change
@@ -583,7 +583,7 @@
583583
"cell_type": "markdown",
584584
"metadata": {},
585585
"source": [
586-
"** Copyright **\n",
586+
"**Copyright**\n",
587587
"\n",
588588
"<p xmlns:dct=\"http://purl.org/dc/terms/\">\n",
589589
" <a rel=\"license\"\n",
@@ -615,7 +615,7 @@
615615
"name": "python",
616616
"nbconvert_exporter": "python",
617617
"pygments_lexer": "ipython3",
618-
"version": "3.4.3"
618+
"version": "3.5.0"
619619
}
620620
},
621621
"nbformat": 4,

random_signals/white_noise.ipynb

+2-2
Original file line numberDiff line numberDiff line change
@@ -151,7 +151,7 @@
151151
"cell_type": "markdown",
152152
"metadata": {},
153153
"source": [
154-
"** Copyright **\n",
154+
"**Copyright**\n",
155155
"\n",
156156
"<p xmlns:dct=\"http://purl.org/dc/terms/\">\n",
157157
" <a rel=\"license\"\n",
@@ -183,7 +183,7 @@
183183
"name": "python",
184184
"nbconvert_exporter": "python",
185185
"pygments_lexer": "ipython3",
186-
"version": "3.4.3"
186+
"version": "3.5.0"
187187
}
188188
},
189189
"nbformat": 4,

0 commit comments

Comments
 (0)