-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpcfg.py
63 lines (52 loc) · 1.86 KB
/
pcfg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from queue import Queue
from nltk import Tree, treetransforms
from collections import defaultdict
from copy import deepcopy
class PCFG:
def __init__(self, parsed_sentences):
self.parsed_sentences = parsed_sentences
self.rules = defaultdict(lambda: 0.0)
self.inverted_rules = defaultdict(lambda: [])
self.symbol_frequencies = defaultdict(lambda: 0.0)
def chomsky_normal_form(self):
chomsky_parsed_senteces = []
for parsed_sentence in self.parsed_sentences:
try:
tree = deepcopy(parsed_sentence)
treetransforms.collapse_unary(tree)
cnfTree = deepcopy(tree)
treetransforms.chomsky_normal_form(cnfTree)
chomsky_parsed_senteces.append(cnfTree)
except Exception:
pass
self.parsed_sentences = chomsky_parsed_senteces
def generate_rules(self):
for parsed_sentence in self.parsed_sentences:
q = Queue()
q.put(parsed_sentence)
while not q.empty():
actual_node = q.get()
if type(actual_node) is Tree:
right_side = []
for children in actual_node:
q.put(children)
right_side.append(children.label() if type(children) is Tree else children)
self.rules[(actual_node.label(), tuple(right_side))] += 1.0
self.symbol_frequencies[actual_node.label()] += 1.0
def generate_probabilities(self):
for k, v in self.rules.items():
self.rules[k] = v / self.symbol_frequencies[k[0]]
def invert_rules(self):
for k, v in self.rules.items():
self.inverted_rules[k[1]].append((k[0], v))
def run(self):
self.chomsky_normal_form()
self.generate_rules()
self.generate_probabilities()
self.invert_rules()
if __name__== '__main__':
from nltk.corpus import floresta
pcfg = PCFG(floresta.parsed_sents())
pcfg.run()
for k, v in pcfg.inverted_rules.items():
print(str(k) + " " + str(v))