forked from mila-iqia/babyai
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate.py
executable file
·105 lines (85 loc) · 4.22 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#!/usr/bin/env python3
"""
Evaluate a trained model or bot
"""
import argparse
import gym
import time
import datetime
import babyai.utils as utils
from babyai.evaluate import evaluate_demo_agent, batch_evaluate, evaluate
# Parse arguments
parser = argparse.ArgumentParser()
parser.add_argument("--env", required=True,
help="name of the environment to be run (REQUIRED)")
parser.add_argument("--model", default=None,
help="name of the trained model (REQUIRED or --demos-origin or --demos REQUIRED)")
parser.add_argument("--demos-origin", default=None,
help="origin of the demonstrations: human | agent (REQUIRED or --model or --demos REQUIRED)")
parser.add_argument("--demos", default=None,
help="name of the demos file (REQUIRED or --demos-origin or --model REQUIRED)")
parser.add_argument("--episodes", type=int, default=1000,
help="number of episodes of evaluation (default: 1000)")
parser.add_argument("--seed", type=int, default=int(1e9),
help="random seed")
parser.add_argument("--argmax", action="store_true", default=False,
help="action with highest probability is selected for model agent")
parser.add_argument("--contiguous-episodes", action="store_true", default=False,
help="Make sure episodes on which evaluation is done are contiguous")
parser.add_argument("--worst-episodes-to-show", type=int, default=10,
help="The number of worse episodes to show")
def main(args, seed, episodes):
# Set seed for all randomness sources
utils.seed(seed)
# Define agent
env = gym.make(args.env)
env.seed(seed)
agent = utils.load_agent(env, args.model, args.demos, args.demos_origin, args.argmax, args.env)
if args.model is None and args.episodes > len(agent.demos):
# Set the number of episodes to be the number of demos
episodes = len(agent.demos)
# Evaluate
if isinstance(agent, utils.DemoAgent):
logs = evaluate_demo_agent(agent, episodes)
elif isinstance(agent, utils.BotAgent) or args.contiguous_episodes:
logs = evaluate(agent, env, episodes, False)
else:
logs = batch_evaluate(agent, args.env, seed, episodes)
return logs
if __name__ == "__main__":
args = parser.parse_args()
assert_text = "ONE of --model or --demos-origin or --demos must be specified."
assert int(args.model is None) + int(args.demos_origin is None) + int(args.demos is None) == 2, assert_text
start_time = time.time()
logs = main(args, args.seed, args.episodes)
end_time = time.time()
# Print logs
num_frames = sum(logs["num_frames_per_episode"])
fps = num_frames/(end_time - start_time)
ellapsed_time = int(end_time - start_time)
duration = datetime.timedelta(seconds=ellapsed_time)
if args.model is not None:
return_per_episode = utils.synthesize(logs["return_per_episode"])
success_per_episode = utils.synthesize(
[1 if r > 0 else 0 for r in logs["return_per_episode"]])
num_frames_per_episode = utils.synthesize(logs["num_frames_per_episode"])
if args.model is not None:
print("F {} | FPS {:.0f} | D {} | R:xsmM {:.3f} {:.3f} {:.3f} {:.3f} | S {:.3f} | F:xsmM {:.1f} {:.1f} {} {}"
.format(num_frames, fps, duration,
*return_per_episode.values(),
success_per_episode['mean'],
*num_frames_per_episode.values()))
else:
print("F {} | FPS {:.0f} | D {} | F:xsmM {:.1f} {:.1f} {} {}"
.format(num_frames, fps, duration, *num_frames_per_episode.values()))
indexes = sorted(range(len(logs["num_frames_per_episode"])), key=lambda k: - logs["num_frames_per_episode"][k])
n = args.worst_episodes_to_show
if n > 0:
print("{} worst episodes:".format(n))
for i in indexes[:n]:
if 'seed_per_episode' in logs:
print(logs['seed_per_episode'][i])
if args.model is not None:
print("- episode {}: R={}, F={}".format(i, logs["return_per_episode"][i], logs["num_frames_per_episode"][i]))
else:
print("- episode {}: F={}".format(i, logs["num_frames_per_episode"][i]))