forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRemoteAST.cpp
1068 lines (880 loc) · 34.6 KB
/
RemoteAST.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- RemoteAST.cpp ----------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the RemoteAST interface.
//
//===----------------------------------------------------------------------===//
#include "swift/RemoteAST/RemoteAST.h"
#include "swift/Remote/MetadataReader.h"
#include "swift/Subsystems.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Module.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Mangler.h"
#include "swift/ClangImporter/ClangImporter.h"
// TODO: Develop a proper interface for this.
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/SILOptions.h"
#include "swift/SIL/SILModule.h"
#include "../IRGen/IRGenModule.h"
#include "../IRGen/FixedTypeInfo.h"
#include "../IRGen/GenClass.h"
#include "../IRGen/GenStruct.h"
#include "../IRGen/GenTuple.h"
#include "../IRGen/MemberAccessStrategy.h"
using namespace swift;
using namespace swift::remote;
using namespace swift::remoteAST;
using irgen::Alignment;
using irgen::Size;
static inline RemoteAddress operator+(RemoteAddress address, Size offset) {
return RemoteAddress(address.getAddressData() + offset.getValue());
}
namespace {
/// A "minimal" class for querying IRGen.
struct IRGenContext {
IRGenOptions IROpts;
SILOptions SILOpts;
std::unique_ptr<SILModule> SILMod;
llvm::LLVMContext LLVMContext;
irgen::IRGenerator IRGen;
irgen::IRGenModule IGM;
private:
IRGenContext(ASTContext &ctx, ModuleDecl *module)
: SILMod(SILModule::createEmptyModule(module, SILOpts)),
IRGen(IROpts, *SILMod),
IGM(IRGen, IRGen.createTargetMachine(), /*SourceFile*/ nullptr,
LLVMContext, "<fake module name>", "<fake output filename>") {
}
public:
static std::unique_ptr<IRGenContext>
create(ASTContext &ctx, DeclContext *nominalDC) {
auto module = nominalDC->getParentModule();
return std::unique_ptr<IRGenContext>(new IRGenContext(ctx, module));
}
};
/// An implementation of MetadataReader's BuilderType concept that
/// just finds and builds things in the AST.
class RemoteASTTypeBuilder {
ASTContext &Ctx;
/// The notional context in which we're writing and type-checking code.
/// Created lazily.
DeclContext *NotionalDC = nullptr;
Optional<Failure> CurFailure;
public:
using BuiltType = swift::Type;
using BuiltNominalTypeDecl = swift::NominalTypeDecl*;
explicit RemoteASTTypeBuilder(ASTContext &ctx) : Ctx(ctx) {}
std::unique_ptr<IRGenContext> createIRGenContext() {
return IRGenContext::create(Ctx, getNotionalDC());
}
template <class Result, class FailureKindTy, class... FailureArgTys>
Result fail(FailureKindTy kind, FailureArgTys &&...failureArgs) {
if (!CurFailure) {
CurFailure.emplace(kind, std::forward<FailureArgTys>(failureArgs)...);
}
return Result();
}
template <class T, class DefaultFailureKindTy, class... DefaultFailureArgTys>
Result<T> getFailureAsResult(DefaultFailureKindTy defaultFailureKind,
DefaultFailureArgTys &&...defaultFailureArgs) {
// If we already have a failure, use that.
if (CurFailure) {
Result<T> result = std::move(*CurFailure);
CurFailure.reset();
return result;
}
// Otherwise, use the default failure.
return Result<T>::emplaceFailure(defaultFailureKind,
std::forward<DefaultFailureArgTys>(defaultFailureArgs)...);
}
Type createBuiltinType(const std::string &mangledName) {
// TODO
return Type();
}
NominalTypeDecl *createNominalTypeDecl(StringRef mangledName) {
auto node = Demangle::demangleTypeAsNode(mangledName);
if (!node) return nullptr;
return createNominalTypeDecl(node);
}
NominalTypeDecl *createNominalTypeDecl(const Demangle::NodePointer &node);
Type createNominalType(NominalTypeDecl *decl, Type parent) {
// If the declaration is generic, fail.
if (decl->getGenericSignature())
return Type();
// Validate the parent type.
if (!validateNominalParent(decl, parent))
return Type();
return NominalType::get(decl, parent, Ctx);
}
Type createBoundGenericType(NominalTypeDecl *decl, ArrayRef<Type> args,
Type parent) {
// If the declaration isn't generic, fail.
if (!decl->getGenericSignature())
return Type();
// Validate the parent type.
if (!validateNominalParent(decl, parent))
return Type();
// Make a generic type repr that's been resolved to this decl.
TypeReprList genericArgReprs(args);
GenericIdentTypeRepr genericRepr(SourceLoc(), decl->getName(),
genericArgReprs.getList(), SourceRange());
genericRepr.setValue(decl);
Type genericType;
// If we have a parent type, we need to build a compound type repr.
if (parent) {
// Life would be much easier if we could just use a FixedTypeRepr for
// the parent. But we can't! So we have to recursively expand
// like this; and recursing with a lambda isn't impossible, so it gets
// even worse.
SmallVector<Type, 4> ancestry;
for (auto p = parent; p; p = p->getNominalParent()) {
ancestry.push_back(p);
}
struct GenericRepr {
TypeReprList GenericArgs;
GenericIdentTypeRepr Ident;
GenericRepr(BoundGenericType *type)
: GenericArgs(type->getGenericArgs()),
Ident(SourceLoc(), type->getDecl()->getName(),
GenericArgs.getList(), SourceRange()) {
Ident.setValue(type->getDecl());
}
// SmallVector::emplace_back will never need to call this because
// we reserve the right size, but it does try statically.
GenericRepr(const GenericRepr &other)
: GenericArgs({}),
Ident(SourceLoc(), Identifier(), {}, SourceRange()) {
llvm_unreachable("should not be called dynamically");
}
};
// Pre-allocate the component vectors so that we can form references
// into them safely.
SmallVector<SimpleIdentTypeRepr, 4> simpleComponents;
SmallVector<GenericRepr, 4> genericComponents;
simpleComponents.reserve(ancestry.size());
genericComponents.reserve(ancestry.size());
// Build the parent hierarchy.
SmallVector<ComponentIdentTypeRepr*, 4> componentReprs;
for (size_t i = ancestry.size(); i != 0; --i) {
Type p = ancestry[i - 1];
if (auto boundGeneric = p->getAs<BoundGenericType>()) {
genericComponents.emplace_back(boundGeneric);
componentReprs.push_back(&genericComponents.back().Ident);
} else {
auto nominal = p->castTo<NominalType>();
simpleComponents.emplace_back(SourceLoc(),
nominal->getDecl()->getName());
componentReprs.push_back(&simpleComponents.back());
}
}
CompoundIdentTypeRepr compoundRepr(componentReprs);
genericType = checkTypeRepr(&compoundRepr);
} else {
genericType = checkTypeRepr(&genericRepr);
}
// If type-checking failed, we've failed.
if (!genericType) return Type();
// Validate that we used the right decl.
if (auto bgt = genericType->getAs<BoundGenericType>()) {
if (bgt->getDecl() != decl)
return Type();
}
return genericType;
}
Type createTupleType(ArrayRef<Type> eltTypes, StringRef labels,
bool isVariadic) {
// Just bail out on variadic tuples for now.
if (isVariadic) return Type();
SmallVector<TupleTypeElt, 4> elements;
elements.reserve(eltTypes.size());
for (auto eltType : eltTypes) {
Identifier label;
if (!labels.empty()) {
auto split = labels.split(' ');
if (!split.first.empty())
label = Ctx.getIdentifier(split.first);
labels = split.second;
}
elements.emplace_back(eltType, label);
}
return TupleType::get(elements, Ctx);
}
Type createFunctionType(ArrayRef<Type> args,
const std::vector<bool> &inOutArgs,
Type output, FunctionTypeFlags flags) {
assert(args.size() == inOutArgs.size());
FunctionTypeRepresentation representation;
switch (flags.getConvention()) {
case FunctionMetadataConvention::Swift:
representation = FunctionTypeRepresentation::Swift;
break;
case FunctionMetadataConvention::Block:
representation = FunctionTypeRepresentation::Block;
break;
case FunctionMetadataConvention::Thin:
representation = FunctionTypeRepresentation::Thin;
break;
case FunctionMetadataConvention::CFunctionPointer:
representation = FunctionTypeRepresentation::CFunctionPointer;
break;
}
auto einfo = AnyFunctionType::ExtInfo(representation,
/*throws*/ flags.throws());
// The result type must be materializable.
if (!output->isMaterializable()) return Type();
// All the argument types must be materializable (before inout is applied).
for (auto arg : args) {
if (!arg->isMaterializable()) return Type();
}
Type input;
if (args.size() == 1) {
input = args[0];
} else {
SmallVector<TupleTypeElt, 4> elts;
elts.reserve(args.size());
for (auto i : indices(args)) {
Type arg = args[i];
if (inOutArgs[i]) arg = InOutType::get(arg);
elts.push_back(arg);
}
}
return FunctionType::get(input, output, einfo);
}
Type createProtocolType(StringRef mangledName,
StringRef moduleName,
StringRef protocolName) {
auto module = Ctx.getModuleByName(moduleName);
if (!module) return Type();
Identifier name = Ctx.getIdentifier(protocolName);
auto decl = findNominalTypeDecl(module, name, Identifier(),
Demangle::Node::Kind::Protocol);
if (!decl) return Type();
return decl->getDeclaredType();
}
Type createProtocolCompositionType(ArrayRef<Type> protocols) {
for (auto protocol : protocols) {
if (!protocol->is<ProtocolType>())
return Type();
}
return ProtocolCompositionType::get(Ctx, protocols);
}
Type createExistentialMetatypeType(Type instance) {
if (!instance->isAnyExistentialType())
return Type();
return ExistentialMetatypeType::get(instance);
}
Type createMetatypeType(Type instance, bool wasAbstract=false) {
// FIXME: Plumb through metatype representation and generalize silly
// 'wasAbstract' flag
return MetatypeType::get(instance);
}
Type createGenericTypeParameterType(unsigned depth, unsigned index) {
return GenericTypeParamType::get(depth, index, Ctx);
}
Type createDependentMemberType(StringRef member, Type base, Type protocol) {
if (!base->isTypeParameter())
return Type();
// TODO: look up protocol?
return DependentMemberType::get(base, Ctx.getIdentifier(member));
}
Type createUnownedStorageType(Type base) {
if (!base->allowsOwnership())
return Type();
return UnownedStorageType::get(base, Ctx);
}
Type createUnmanagedStorageType(Type base) {
if (!base->allowsOwnership())
return Type();
return UnmanagedStorageType::get(base, Ctx);
}
Type createWeakStorageType(Type base) {
if (!base->allowsOwnership())
return Type();
return WeakStorageType::get(base, Ctx);
}
Type createSILBoxType(Type base) {
return SILBoxType::get(base->getCanonicalType());
}
Type createObjCClassType(StringRef name) {
Identifier ident = Ctx.getIdentifier(name);
auto typeDecl =
findForeignNominalTypeDecl(ident, Demangle::Node::Kind::Class);
if (!typeDecl) return Type();
return createNominalType(typeDecl, /*parent*/ Type());
}
Type createForeignClassType(StringRef mangledName) {
auto typeDecl = createNominalTypeDecl(mangledName);
if (!typeDecl) return Type();
return createNominalType(typeDecl, /*parent*/ Type());
}
Type getUnnamedForeignClassType() {
return Type();
}
Type getOpaqueType() {
return Type();
}
private:
bool validateNominalParent(NominalTypeDecl *decl, Type parent) {
auto parentDecl =
decl->getDeclContext()->getAsNominalTypeOrNominalTypeExtensionContext();
// If we don't have a parent type, fast-path.
if (!parent) {
return parentDecl == nullptr;
}
// We do have a parent type. If the nominal type doesn't, it's an error.
if (!parentDecl) {
return false;
}
// FIXME: validate that the parent is a correct application of the
// enclosing context?
return true;
}
DeclContext *findDeclContext(const Demangle::NodePointer &node);
ModuleDecl *findModule(const Demangle::NodePointer &node);
Demangle::NodePointer findModuleNode(const Demangle::NodePointer &node);
bool isForeignModule(const Demangle::NodePointer &node);
NominalTypeDecl *findNominalTypeDecl(DeclContext *dc,
Identifier name,
Identifier privateDiscriminator,
Demangle::Node::Kind kind);
NominalTypeDecl *findForeignNominalTypeDecl(Identifier name,
Demangle::Node::Kind kind);
Type checkTypeRepr(TypeRepr *repr) {
DeclContext *dc = getNotionalDC();
TypeLoc loc(repr);
if (performTypeLocChecking(Ctx, loc, dc, /*diagnose*/ false))
return Type();
return loc.getType();
}
static NominalTypeDecl *getAcceptableNominalTypeCandidate(ValueDecl *decl,
Demangle::Node::Kind kind) {
if (kind == Demangle::Node::Kind::Class) {
return dyn_cast<ClassDecl>(decl);
} else if (kind == Demangle::Node::Kind::Enum) {
return dyn_cast<EnumDecl>(decl);
} else if (kind == Demangle::Node::Kind::Protocol) {
return dyn_cast<ProtocolDecl>(decl);
} else {
assert(kind == Demangle::Node::Kind::Structure);
return dyn_cast<StructDecl>(decl);
}
}
DeclContext *getNotionalDC() {
if (!NotionalDC) {
NotionalDC = ModuleDecl::create(Ctx.getIdentifier(".RemoteAST"), Ctx);
NotionalDC = new (Ctx) TopLevelCodeDecl(NotionalDC);
}
return NotionalDC;
}
class TypeReprList {
SmallVector<FixedTypeRepr, 4> Reprs;
SmallVector<TypeRepr*, 4> Refs;
public:
explicit TypeReprList(ArrayRef<Type> types) {
Reprs.reserve(types.size());
Refs.reserve(types.size());
for (auto type : types) {
Reprs.emplace_back(type, SourceLoc());
Refs.push_back(&Reprs.back());
}
}
ArrayRef<TypeRepr*> getList() const {
return Refs;
}
};
};
} // end anonymous namespace
NominalTypeDecl *
RemoteASTTypeBuilder::createNominalTypeDecl(const Demangle::NodePointer &node) {
auto DC = findDeclContext(node);
if (!DC) {
return fail<NominalTypeDecl*>(Failure::CouldNotResolveTypeDecl,
Demangle::mangleNode(node, NewMangling::useNewMangling()));
}
auto decl = dyn_cast<NominalTypeDecl>(DC);
if (!decl) return nullptr;
return decl;
}
ModuleDecl *RemoteASTTypeBuilder::findModule(const Demangle::NodePointer &node){
assert(node->getKind() == Demangle::Node::Kind::Module);
const auto &moduleName = node->getText();
return Ctx.getModuleByName(moduleName);
}
Demangle::NodePointer
RemoteASTTypeBuilder::findModuleNode(const Demangle::NodePointer &node) {
if (node->getKind() == Demangle::Node::Kind::Module)
return node;
if (!node->hasChildren()) return nullptr;
const auto &child = node->getFirstChild();
if (child->getKind() != Demangle::Node::Kind::DeclContext)
return nullptr;
return findModuleNode(child->getFirstChild());
}
bool RemoteASTTypeBuilder::isForeignModule(const Demangle::NodePointer &node) {
if (node->getKind() == Demangle::Node::Kind::DeclContext)
return isForeignModule(node->getFirstChild());
if (node->getKind() != Demangle::Node::Kind::Module)
return false;
return (node->getText() == "__ObjC");
}
DeclContext *
RemoteASTTypeBuilder::findDeclContext(const Demangle::NodePointer &node) {
switch (node->getKind()) {
case Demangle::Node::Kind::DeclContext:
case Demangle::Node::Kind::Type:
return findDeclContext(node->getFirstChild());
case Demangle::Node::Kind::Module:
return findModule(node);
case Demangle::Node::Kind::Class:
case Demangle::Node::Kind::Enum:
case Demangle::Node::Kind::Protocol:
case Demangle::Node::Kind::Structure: {
const auto &declNameNode = node->getChild(1);
// Handle local declarations.
if (declNameNode->getKind() == Demangle::Node::Kind::LocalDeclName) {
// Find the AST node for the defining module.
auto moduleNode = findModuleNode(node);
if (!moduleNode) return nullptr;
auto module = findModule(moduleNode);
if (!module) return nullptr;
// Look up the local type by its mangling.
auto mangledName = Demangle::mangleNode(node,
NewMangling::useNewMangling());
auto decl = module->lookupLocalType(mangledName);
if (!decl) return nullptr;
return dyn_cast<DeclContext>(decl);
}
Identifier name;
Identifier privateDiscriminator;
if (declNameNode->getKind() == Demangle::Node::Kind::Identifier) {
name = Ctx.getIdentifier(declNameNode->getText());
} else if (declNameNode->getKind() ==
Demangle::Node::Kind::PrivateDeclName) {
name = Ctx.getIdentifier(declNameNode->getChild(1)->getText());
privateDiscriminator =
Ctx.getIdentifier(declNameNode->getChild(0)->getText());
// Ignore any other decl-name productions for now.
} else {
return nullptr;
}
DeclContext *dc = findDeclContext(node->getChild(0));
if (!dc) {
// Do some backup logic for foreign type declarations.
if (privateDiscriminator.empty() &&
isForeignModule(node->getChild(0))) {
return findForeignNominalTypeDecl(name, node->getKind());
} else {
return nullptr;
}
}
return findNominalTypeDecl(dc, name, privateDiscriminator, node->getKind());
}
// Bail out on other kinds of contexts.
// TODO: extensions
// TODO: local contexts
default:
return nullptr;
}
}
NominalTypeDecl *
RemoteASTTypeBuilder::findNominalTypeDecl(DeclContext *dc,
Identifier name,
Identifier privateDiscriminator,
Demangle::Node::Kind kind) {
auto module = dc->getParentModule();
SmallVector<ValueDecl *, 4> lookupResults;
module->lookupMember(lookupResults, dc, name, privateDiscriminator);
NominalTypeDecl *result = nullptr;
for (auto decl : lookupResults) {
// Ignore results that are not the right kind of nominal type declaration.
NominalTypeDecl *candidate = getAcceptableNominalTypeCandidate(decl, kind);
if (!candidate)
continue;
// Ignore results that aren't actually from the defining module.
if (candidate->getParentModule() != module)
continue;
// This is a viable result.
// If we already have a viable result, it's ambiguous, so give up.
if (result) return nullptr;
result = candidate;
}
return result;
}
NominalTypeDecl *
RemoteASTTypeBuilder::findForeignNominalTypeDecl(Identifier name,
Demangle::Node::Kind kind) {
// Check to see if we have an importer loaded.
auto importer = static_cast<ClangImporter *>(Ctx.getClangModuleLoader());
if (!importer) return nullptr;
// Find the unique declaration that has the right kind.
struct Consumer : VisibleDeclConsumer {
Demangle::Node::Kind ExpectedKind;
NominalTypeDecl *Result = nullptr;
bool HadError = false;
explicit Consumer(Demangle::Node::Kind kind) : ExpectedKind(kind) {}
void foundDecl(ValueDecl *decl, DeclVisibilityKind reason) override {
if (HadError) return;
auto typeDecl = getAcceptableNominalTypeCandidate(decl, ExpectedKind);
if (!typeDecl) return;
if (typeDecl == Result) return;
if (!Result) {
Result = typeDecl;
} else {
HadError = true;
Result = nullptr;
}
}
} consumer(kind);
importer->lookupValue(name, consumer);
return consumer.Result;
}
namespace {
/// The basic implementation of the RemoteASTContext interface.
/// The template subclasses do target-specific logic.
class RemoteASTContextImpl {
std::unique_ptr<IRGenContext> IRGen;
public:
RemoteASTContextImpl() = default;
virtual ~RemoteASTContextImpl() = default;
virtual Result<Type>
getTypeForRemoteTypeMetadata(RemoteAddress metadata) = 0;
virtual Result<MetadataKind>
getKindForRemoteTypeMetadata(RemoteAddress metadata) = 0;
virtual Result<NominalTypeDecl*>
getDeclForRemoteNominalTypeDescriptor(RemoteAddress descriptor) = 0;
Result<uint64_t>
getOffsetOfMember(Type type, RemoteAddress optMetadata, StringRef memberName){
// Sanity check: obviously invalid arguments.
if (!type || memberName.empty())
return Result<uint64_t>::emplaceFailure(Failure::BadArgument);
// Sanity check: if the caller gave us a dependent type, there's no way
// we can handle that.
if (type->hasTypeParameter() || type->hasArchetype())
return Result<uint64_t>::emplaceFailure(Failure::DependentArgument);
// Split into cases.
if (auto typeDecl = type->getNominalOrBoundGenericNominal()) {
return getOffsetOfField(type, typeDecl, optMetadata, memberName);
} else if (auto tupleType = type->getAs<TupleType>()) {
return getOffsetOfTupleElement(tupleType, optMetadata, memberName);
} else {
return Result<uint64_t>::emplaceFailure(Failure::TypeHasNoSuchMember,
memberName);
}
}
protected:
template <class T>
Result<T> getFailure() {
return getBuilder().getFailureAsResult<T>(Failure::Unknown);
}
template <class T, class KindTy, class... ArgTys>
Result<T> fail(KindTy kind, ArgTys &&...args) {
return Result<T>::emplaceFailure(kind, std::forward<ArgTys>(args)...);
}
private:
virtual RemoteASTTypeBuilder &getBuilder() = 0;
virtual MemoryReader &getReader() = 0;
virtual bool readWordOffset(RemoteAddress address, int64_t *offset) = 0;
virtual std::unique_ptr<IRGenContext> createIRGenContext() = 0;
virtual Result<uint64_t>
getOffsetOfTupleElementFromMetadata(RemoteAddress metadata,
unsigned elementIndex) = 0;
virtual Result<uint64_t>
getOffsetOfFieldFromMetadata(RemoteAddress metadata,
StringRef memberName) = 0;
IRGenContext *getIRGen() {
if (!IRGen) IRGen = createIRGenContext();
return IRGen.get();
}
Result<uint64_t>
getOffsetOfField(Type type, NominalTypeDecl *typeDecl,
RemoteAddress optMetadata, StringRef memberName) {
if (!isa<StructDecl>(typeDecl) && !isa<ClassDecl>(typeDecl))
return fail<uint64_t>(Failure::Unimplemented,
"access members of this kind of type");
// Try to find the member.
VarDecl *member = findField(typeDecl, memberName);
// If we found a member, try to find its offset statically.
if (member) {
if (auto irgen = getIRGen()) {
return getOffsetOfFieldFromIRGen(irgen->IGM, type, typeDecl,
optMetadata, member);
}
}
// Try searching the metadata for a member with the given name.
if (optMetadata) {
return getOffsetOfFieldFromMetadata(optMetadata, memberName);
}
// Okay, that's everything we know how to try.
// Use a specialized diagnostic if we couldn't find any such member.
if (!member) {
return fail<uint64_t>(Failure::TypeHasNoSuchMember, memberName);
}
return fail<uint64_t>(Failure::Unknown);
}
/// Look for an instance property of the given nominal type that's
/// known to be stored.
VarDecl *findField(NominalTypeDecl *typeDecl, StringRef memberName) {
for (auto field : typeDecl->getStoredProperties()) {
if (field->getName().str() == memberName)
return field;
}
return nullptr;
}
using MemberAccessStrategy = irgen::MemberAccessStrategy;
Result<uint64_t>
getOffsetOfFieldFromIRGen(irgen::IRGenModule &IGM, Type type,
NominalTypeDecl *typeDecl,
RemoteAddress optMetadata, VarDecl *member) {
SILType loweredTy = IGM.getSILTypes().getLoweredType(type);
MemberAccessStrategy strategy =
(isa<StructDecl>(typeDecl)
? getPhysicalStructMemberAccessStrategy(IGM, loweredTy, member)
: getPhysicalClassMemberAccessStrategy(IGM, loweredTy, member));
switch (strategy.getKind()) {
case MemberAccessStrategy::Kind::Complex:
return fail<uint64_t>(Failure::Unimplemented,
"access members with complex storage");
case MemberAccessStrategy::Kind::DirectFixed:
return uint64_t(strategy.getDirectOffset().getValue());
case MemberAccessStrategy::Kind::DirectGlobal: {
RemoteAddress directOffsetAddress =
getReader().getSymbolAddress(strategy.getDirectGlobalSymbol());
if (!directOffsetAddress)
return getFailure<uint64_t>();
return readDirectOffset(directOffsetAddress,
strategy.getDirectOffsetKind());
}
case MemberAccessStrategy::Kind::IndirectFixed: {
// We can't apply indirect offsets without metadata.
if (!optMetadata)
return fail<uint64_t>(Failure::Unimplemented,
"access generically-offset members without "
"metadata");
Size indirectOffset = strategy.getIndirectOffset();
return readIndirectOffset(optMetadata, indirectOffset,
strategy.getDirectOffsetKind());
}
case MemberAccessStrategy::Kind::IndirectGlobal: {
// We can't apply indirect offsets without metadata.
if (!optMetadata)
return fail<uint64_t>(Failure::Unimplemented,
"access generically-offset members without "
"metadata");
RemoteAddress indirectOffsetAddress =
getReader().getSymbolAddress(strategy.getIndirectGlobalSymbol());
Size indirectOffset;
if (!readOffset(indirectOffsetAddress,
strategy.getIndirectOffsetKind(),
indirectOffset))
return getFailure<uint64_t>();
return readIndirectOffset(optMetadata, indirectOffset,
strategy.getDirectOffsetKind());
}
}
llvm_unreachable("bad member MemberAccessStrategy");
}
bool readOffset(RemoteAddress address,
MemberAccessStrategy::OffsetKind kind,
Size &offset) {
switch (kind) {
case MemberAccessStrategy::OffsetKind::Bytes_Word: {
int64_t rawOffset;
if (!readWordOffset(address, &rawOffset))
return false;
offset = Size(rawOffset);
return true;
}
}
llvm_unreachable("bad offset kind");
}
Result<uint64_t> readIndirectOffset(RemoteAddress metadata,
Size indirectOffset,
MemberAccessStrategy::OffsetKind kind) {
RemoteAddress directOffsetAddress = metadata + indirectOffset;
return readDirectOffset(directOffsetAddress, kind);
}
Result<uint64_t> readDirectOffset(RemoteAddress directOffsetAddress,
MemberAccessStrategy::OffsetKind kind) {
Size directOffset;
if (!readOffset(directOffsetAddress, kind, directOffset))
return getFailure<uint64_t>();
return uint64_t(directOffset.getValue());
}
/// Read the
Result<uint64_t>
getOffsetOfTupleElement(TupleType *type, RemoteAddress optMetadata,
StringRef memberName) {
// Check that the member "name" is a valid index into the tuple.
unsigned targetIndex;
if (memberName.getAsInteger(10, targetIndex) ||
targetIndex >= type->getNumElements())
return fail<uint64_t>(Failure::TypeHasNoSuchMember, memberName);
// Fast path: element 0 is always at offset 0.
if (targetIndex == 0) return uint64_t(0);
// Create an IRGen instance.
auto irgen = getIRGen();
if (!irgen) return Result<uint64_t>::emplaceFailure(Failure::Unknown);
auto &IGM = irgen->IGM;
SILType loweredTy = IGM.getSILTypes().getLoweredType(type);
// If the type has a statically fixed offset, return that.
if (auto offset =
irgen::getFixedTupleElementOffset(IGM, loweredTy, targetIndex))
return offset->getValue();
// If we have metadata, go load from that.
if (optMetadata)
return getOffsetOfTupleElementFromMetadata(optMetadata, targetIndex);
// Okay, reproduce tuple layout.
// Find the last element with a known offset. Note that we don't
// have to ask IRGen about element 0 because we know its size is zero.
Size lastOffset = Size(0);
unsigned lastIndex = targetIndex;
for (--lastIndex; lastIndex != 0; --lastIndex) {
if (auto offset =
irgen::getFixedTupleElementOffset(IGM, loweredTy, lastIndex)) {
lastOffset = *offset;
break;
}
}
// Okay, iteratively build up from there.
for (; ; ++lastIndex) {
// Try to get the size and alignment of this element.
SILType eltTy = loweredTy.getTupleElementType(lastIndex);
auto sizeAndAlignment = getTypeSizeAndAlignment(IGM, eltTy);
if (!sizeAndAlignment) return getFailure<uint64_t>();
// Round up to the alignment of the element.
lastOffset = lastOffset.roundUpToAlignment(sizeAndAlignment->second);
// If this is the target, we're done.
if (lastIndex == targetIndex)
return lastOffset.getValue();
// Otherwise, skip forward by the size of the element.
lastOffset += sizeAndAlignment->first;
}
llvm_unreachable("didn't reach target index");
}
/// Attempt to discover the size and alignment of the given type.
Optional<std::pair<Size, Alignment>>
getTypeSizeAndAlignment(irgen::IRGenModule &IGM, SILType eltTy) {
auto &eltTI = IGM.getTypeInfo(eltTy);
if (auto fixedTI = dyn_cast<irgen::FixedTypeInfo>(&eltTI)) {
return std::make_pair(fixedTI->getFixedSize(),
fixedTI->getFixedAlignment());
}
// TODO: handle resilient types
return None;
}
};
/// A template for generating target-specific implementations of the
/// RemoteASTContext interface.
template <class Runtime>
class RemoteASTContextConcreteImpl final : public RemoteASTContextImpl {
MetadataReader<Runtime, RemoteASTTypeBuilder> Reader;
RemoteASTTypeBuilder &getBuilder() override {
return Reader.Builder;
}
MemoryReader &getReader() override {
return *Reader.Reader;
}
bool readWordOffset(RemoteAddress address, int64_t *extendedOffset) override {
using unsigned_size_t = typename Runtime::StoredSize;
using signed_size_t = typename std::make_signed<unsigned_size_t>::type;
signed_size_t offset;
if (!getReader().readInteger(address, &offset))
return false;
*extendedOffset = offset;
return true;
}
public:
RemoteASTContextConcreteImpl(std::shared_ptr<MemoryReader> &&reader,
ASTContext &ctx)
: Reader(std::move(reader), ctx) {}
Result<Type> getTypeForRemoteTypeMetadata(RemoteAddress metadata) override {
if (auto result = Reader.readTypeFromMetadata(metadata.getAddressData()))
return result;
return getFailure<Type>();
}
Result<MetadataKind>
getKindForRemoteTypeMetadata(RemoteAddress metadata) override {
auto result = Reader.readKindFromMetadata(metadata.getAddressData());
if (result.first)
return result.second;
return getFailure<MetadataKind>();
}
Result<NominalTypeDecl*>
getDeclForRemoteNominalTypeDescriptor(RemoteAddress descriptor) override {
if (auto result =
Reader.readNominalTypeFromDescriptor(descriptor.getAddressData()))
return result;
return getFailure<NominalTypeDecl*>();
}
std::unique_ptr<IRGenContext> createIRGenContext() override {
return getBuilder().createIRGenContext();
}